This site is supported by donations to The OEIS Foundation.

CiteY

From OeisWiki
Jump to: navigation, search


"Our enumerative results establish further connections to the OEIS sequences and some classical combinatorial objects, such as restricted permutations, weighted ordered trees and set partitions. ... The On-Line Encyclopedia of Integer Sequences created by Neil Sloane is very helpful in this research.''" [Chunyan Yan and Zhicong Lin, 2019]

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with Y.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. Anila Yadavalli, Quadrant marked mesh patterns in words, Undergraduate Thesis, UCSD, 2012, PDF
  2. A. Yajima, How to calculate the number of stereoisomers of inositol-homologs, Bull. Chem. Soc. Jpn. 2014, 87, 1260-1264 doi:10.1246/bcsj.20140204
  3. S. Yakoubov, Pattern Avoidance in Extensions of Comb-Like Posets, arXiv preprint arXiv:1310.2979, 2013
  4. Yu. Yakubovich, Integer partitions with fixed subsums, Elect. J. Combinatorics 12 (2005) N7.
  5. Y. Yakubovich, Ergodicity of multiplicative statistics, Journal of Combinatorial Theory, Series A 119 (2012) 1250-1279.
  6. Katsuhisa Yamanaka, Takashi Horiyama, Takeaki Uno, Kunihiro Wasa, Ladder-Lottery Realization, 30th Canadian Conference on Computational Geometry (CCCG 2018) Winnipeg. PDF (A006245)
  7. Katsuhisa Yamanaka and Shin-ichi Nakano, Enumeration, Counting, and Random Generation of Ladder Lotteries, IEICE Transactions on Information and Systems, Vol. E100.D (2017) No. 3 pp. 444-451. doi:10.1587/transinf.2016FCP0015
  8. K. Yamanaka, S.-i. Nakano, Y. Matsui, R. Uehara, K. Nakada, doi:10.1016/j.tcs.2010.01.002, Efficient enumeration of all ladder lotteries and its application, Theor. Comp. Sci. 411 (2010) 1714-1722.
  9. Chunyan Yan, Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019. (A000027, A000045, A000071, A000079, A000108, A000110, A000124, A000325, A001519, A006318, A026898, A034943, A047970, A074664, A086211, A088921, A106228, A117106, A212198, A279555, A279559, A279561, A279564, A279566, A279573) Our enumerative results establish further connections to the OEIS sequences and some classical combinatorial objects, such as restricted permutations, weighted ordered trees and set partitions. The On-Line Encyclopedia of Integer Sequences created by Neil Sloane is very helpful in this research.
  10. Sherry H. F. Yan, "From (2,3)-Motzkin Paths to Schröder Paths", J. Integer Sequences, Volume 10, 2007, Article 07.9.1.
  11. Sherry H. F. Yan, Schroeder Paths and Pattern Avoiding Partitions], arXiv:0805.2465 [math.CO]
  12. Yan, Sherry H. F. doi:10.1016/j.ejc.2013.12.007 Ascent sequences and 3-nonnesting set partitions. Eur. J. Comb. 39, 80-94 (2014)
  13. Sherry H.F. Yan, Xuezi Liu, 2-noncrossing trees and 5-ary trees, Discrete Mathematics, 309 (20) (2009) 6135-6138 doi:10.1016/j.disc.2009.03.044
  14. Yan, Sherry H., Qin, G., Jin, Z., & Zhou, R. D. (2017). On (2k+ 1, 2k+ 3)-core partitions with distinct parts. Discrete Mathematics, 340(6), 1191-1202.
  15. T. Yanagita, T. Ichinomiya, Thermodynamic Characterization of Synchronization-Optimized Oscillator-Networks, arXiv preprint arXiv:1409.1979, 2014
  16. Jane Y. X. Yang, Combinatorial proofs and generalizations on conjectures related with Euler's partition theorem, arXiv:1801.06815 [math.CO], 2018. (A034296, A090867)
  17. J. Y. X. Yang, M. X. X. Zhong, R. D. P. Zhou, On the Enumeration of (s, s+ 1, s+2)-Core Partitions, arXiv preprint arXiv:1406.2583, 2014
  18. J. Z. Yang, Graphical Numerical Inference (a.k.a. Brain Surgery for Excel), PDF, 2012.
  19. Jizhen Yang, Zhizheng Zhang, Some identities of the generalized Fibonacci and Lucas sequences, Applied Mathematics and Computation (2018) Vol. 339, Pages 451-458. doi:10.1016/j.amc.2018.07.054
  20. Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.
  21. Lin Yang, Sheng-Liang Yang, A Chung–Feller property for the generalized Schröder paths, Discrete Mathematics (2020) Vol. 343, Issue 5, 111826. doi:10.1016/j.disc.2020.111826
  22. Lin Yang, Sheng-Liang Yang, Tian-Xiao He, Generalized Schröder matrices arising from enumeration of lattice paths, Czechoslovak Mathematical Journal (2019), 1-23. doi:10.21136/CMJ.2019.0348-18
  23. Mingjia Yang, Doron Zeilberger, Increasing Consecutive Patterns in Words. arXiv:1805.06077 [math.CO], 2018. (A049774, A117158, A177523, A177533, A177553, A177555, A177558, A177564, A177574, A177594, A177596, A177599, A177605, A177615, A177635, A177637, A177640, A177646, A177656, A177676, A230051, A230231)
  24. Mingjia Yang, Doron Zeilberger, Systematic Counting of Restricted Partitions, arXiv:1910.08989 [math.CO], 2019. See also Integers (2020) Vol. 20, #A62. PDF (A000009, A000041, A000726, A001935, A003114, A035957, A070047, A116931)
  25. Yang, Sheng-Liang, Yan-Ni Dong, and Tian-Xiao He. "Some matrix identities on colored Motzkin paths." Discrete Mathematics 340.12 (2017): 3081-3091.
  26. Sheng-Liang Yang, Yan-Ni Dong, Tian-Xiao He, Yan-Xue Xu, A unified approach for the Catalan matrices by using Riordan arrays, Linear Algebra and its Applications (2018) Vol. 558, 25-43. doi:10.1016/j.laa.2018.07.037
  27. Sheng-Liang Yang and Yuan-Yuan Gao, The Pascal rhombus and Riordan arrays, Fib. Q., 56:4 (2018), 337-347.
  28. Sheng-Liang Yang, LJ Wang, Taylor expansions for the m-Catalan numbers, AUSTRALASIAN JOURNAL OF COMBINATORICS, Volume 64(3) (2016), Pages 420–431.
  29. Shichug Yang, Alain Togbé, On the estimates of the upper and lower bounds of Ramanujan primes, The Ramanujan Journal, 2015
  30. Shiyun Yang, Algorithms for fast linear system solving and rank profile computation, Thesis, Computer Science, Waterloo, 2014; PDF
  31. Yang, Winston C. Derivatives are essentially integer partitions. Discrete Math. 222 (2000), no. 1-3, 235-245.
  32. Oleksandra Yezerska, Sergiy Butenko, The Maximum Clique and Vertex Coloring, Handbook of Heuristics. Springer, Cham, 2018, 1-31. doi:10.1007/978-3-319-07153-4_47-1 (A265032)
  33. Yongzhi Yang and Johann Leida, Pascal decompositions of geometric arrays in matrices, Fib. Quart. 42 (No. 3, 2004), 205-215.
  34. Yutong Yang, From Simplest Recursion to the Recursion of Generalizations of Cross Polytope Numbers, (2017), Honors College Capstone and Theses, 13.
  35. F. Yano and H. Yoshida, Some set partition statistics in non-crossing partitions and generating functions, Discr. Math., 307 (2007), 3147-3160.
  36. Yukun Yao, Doron Zeilberger, An Experimental Mathematics Approach to the Area Statistic of Parking Functions, arXiv:1806.02680 [math.CO], 2018. (A000435)
  37. Yukun Yao and Doron Zeilberger, <a href="http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/peaceable.pdf">Numerical and Symbolic Studies of the Peaceable Queens Problem</a>, Feb 14, 2019, see also arXiv:1902.05886 (A250000)
  38. D. Yaqubi, M. Farrokhi, D. G. H. Gahsemian Zoeram, Lattice paths inside a table, I. arXiv:1612.08697 (2016)
  39. Daniel Yaqubi, Toufik Mansour, Madjid Mirzvaziri, The twelvefold way, the nonintersecting circles problem, and partitions of multisets, Turkish Journal of Mathematics (2019) Vol. 43, 765–782. doi:10.3906/mat-1805-72
  40. Aleksandr Yaroslavskiy, Central Limit Theorems for Tableaux Related to the Partially Asymmetric Simple Exclusion Process, Ph. D. Thesis, Drexel University (2020). Preview
  41. O. Yayenie, A note on generalized Fibonacci sequences, Appl. Math. Comput. 217 (2011) 5603-5611 doi:10.1016/j.amc.2010.12.038
  42. Yazdi, S. M. Hossein Tabatabaei; Savari, Serap A. On the relationships among optimal symmetric fix-free codes. IEEE Trans. Inform. Theory 60 (2014), no. 8, 4567-4583.
  43. James M. Yearsley, The propagator for the step potential and delta function potential using the path decomposition expansion, arXiv:0804.2391 [quant-ph]
  44. James M Yearsley, Aspects of Time in Quantum Theory, arXiv:1110.5790 [quant-ph]
  45. Yeats, Karen Rearranging Dyson-Schwinger equations. With a foreword by Dirk Kreimer. Mem. Amer. Math. Soc. 211 (2011), no. 995, x+82 pp. ISBN: 978-0-8218-5306-1
  46. Karen Yeats, A study on prefixes of c_2 invariants. arXiv:1805.11735 [math.CO], 2018. (A000110)
  47. Joseph D. Yelk, Molecular Dynamics Investigations of Duplex Columnar Liquid Crystal Phases of Nucleoside Triphosphates, Ph. D. thesis, Northwestern University (2008). PDF (A051437)
  48. D. Yeliussizov, Permutation Statistics on Multisets, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012; PDF
  49. Yen, Lily, Arc-coloured permutations PSAC 2012 (Paris, June 23-28, 2013) Proc. DMTCS (2013) 743-754
  50. Lily Yen, A Bijection for Crossings and Nestings, arXiv preprint arXiv:1209.3082, 2012
  51. Lily Yen, Crossings and Nestings for Arc-Coloured Permutations and Automation, Electronic Journal of Combinatorics, 22(1) (2015), #P1.14
  52. T. Yi, A Tree in a Brain Tumor, Proceedings Thirty-fourth Annual Meeting, Florida Section, Mathematical Association of America.
  53. V. Yildiz, General combinatorical structure of truth tables of bracketed formulae connected by implication, Arxiv preprint arXiv:1205.5595, 2012
  54. Yasar Yilmaz Atas, Quelques aspects du chaos quantique dans les systems de N-corps en interaction chaines des spins quantiques et matrice aleatoires, Phd Thesis, Universite Paris-Sud (2014), page 19.
  55. Chris Ying, Enumerating Unique Computational Graphs via an Iterative Graph Invariant, arXiv:1902.06192 [cs.DM], 2019. (A000088, A003024, A057500, A240955)
  56. Martha Yip, Rook Placements and Jordan Forms of Upper-Triangular Nilpotent Matrices, arXiv:1703.00057 [math.CO], 2017; The Electronic Journal of Combinatorics 25(1) (2018), #P1.68. (A009766)
  57. Anssi Yli-Jyra, On Dependency Analysis via Contractions and Weighted FSTs, in "Shall We Play the Festschrift Game?", Springer, 2012, pp. 133-158; doi:10.1007/978-3-642-30773-7_10
  58. Anssi Yli-Jyrä, Transition-Based Coding and Formal Language Theory for Ordered Digraphs, Proceedings of the 14th International Conference on Finite-State Methods and Natural Language Processing, Association for Computational Linguistics (Dresden, Germany 2019), 118-131. doi:10.18653/v1/W19-3115 (seq) Hoppe and Petrone have exhaustively enumerated all simple, connected graphs of a finite order and computed a selection of invariants over the sets in order to discover and add 141 new integer sequences to the Online Encyclopedia of Integer Sequences (OEIS)
  59. Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing, arXiv:1706.03357 [cs.CL], 2017.
  60. Emre Yolcu, Xinyu Wu, Marijn J. H. Heule, Mycielski graphs and PR proofs, Carnegie Mellon University (2020). PDF (A122695)
  61. Alexander Yong, The Joseph Greenberg problem: combinatorics and comparative linguistics, arXiv preprint arXiv:1309.5883, 2013
  62. K. Yordzhev, Fibonacci sequence related to a combinatorial problem on binary matrices, arXiv preprint arXiv:1305.6790, 2013
  63. K. Yordzhev, On an Algorithm for Isomorphism-Free Generations of Combinatorial Objects, International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), Web Site: www.ijettcs.org, Volume 2, Issue 6, November - December 2013, ISSN 2278-6856
  64. K. Yordzhev, Semi-canonical binary matrices, arXiv preprint arXiv:1506.04642, 2015.
  65. Krasimir Yordzhev, The bitwise operations in relation to obtaining Latin squares, arXiv preprint arXiv:1605.07171, 2016.
  66. Krasimir Yordzhev, On the Concept of Bitwise Operations in the Programming Courses, Mathematics and Informatics (Математика и информатика, Национално издателство за образование и наука „Аз-буки“, 2019) Vol. 62, Issue 3, 325-339. Abstract
  67. Na You, Chang Xuan Mao, On hierarchical loglinear models in capturerecapture studies, Computational Statistics & Data Analysis 53 (12) (2009) 3916-3920 doi:10.1016/j.csda.2009.04.022
  68. Xu You, Di-Rong Chen, Improved continued fraction sequence convergent to the Somos' quadratic recurrence constant, Mathematical Analysis and Applications, Volume 436, Issue 1, 1 April 2016, Pages 513–520
  69. Donovan Young, The Number of Domino Matchings in the Game of Memory, J. Int. Seq., Vol. 21 (2018), Article 18.8.1. HTML (A000045, A001883, A046741, A079267, A178523, A265167, A318243, A318244, A318267, A318268, A318269, A318270)
  70. Donovan Young, Generating Functions for Domino Matchings in the 2 × k Game of Memory, J. Int. Seq., Vol. 22 (2019), Article 19.8.7. Abstract (A000045, A001883, A046741, A055140, A079267, A178523, A265167, A318243, A318244, A318267, A318268, A318269, A318270, A325753, A325754)
  71. G. S. Yovanof, H. Taylor, doi:10.1016/S0898-1221(00)00105-X B2-sequences and the distinct distance constant, Computers & Mathematics with Applications, Volume 39, Issue 11, June 2000, Pages 37-42.
  72. Han Yu, Fractal projections with an application in number theory, arXiv:2004.05924 [math.NT], 2020. (A030979)
  73. Shaoxiong (Steven) Yuan, Generalized Identities of Certain Continued Fractions, arXiv:1907.12459 [math.NT], 2019. (A001076, A049666, A049669, A104449, A169985, A305413)
  74. Fumitaka Yura, Hankel Determinant Solution for Elliptic Sequence, arXiv preprint arXiv:1411.6972, 2014
  75. A. A. Yurchenko, M. A. Antyukhova and P. N. Vorontsov-Velyaminov, Study of the polymer interaction with a surface by entropic sampling, JOURNAL OF STRUCTURAL CHEMISTRY, Volume 52, Number 6 (2011), 1179-1186, doi:10.1134/S0022476611060254
  76. A. V. Yurkin, On similarity of systems of geometrical and arithmetic triangles, in Mathematics, Computing, Education Conference XIX, 2012. http://www.mce.biophys.msu.ru/eng/archive/abstracts/mce19/sect1138/doc150220/
  77. A. V. Yurkin, New view on the diffraction discovered by Grimaldi and Gaussian beams, arXiv preprint arXiv:1302.6287, 2013
  78. A. V. Yurkin, About the evident description of distribution of beams and "wavy geometrical trajectories" in long thin pipes, http://www.mce.biophys.msu.ru/eng/archive/abstracts/mce22/sect1138/doc216454/, 2014 (original in Russian)
  79. A. V. Yurkin, Symmetric triangle of Pascal and non-linear arithmetic parallelepiped, Book Manuscript, 2015; https://www.researchgate.net/profile/Alexander_Yurkin/publication/274072415_Symmetric_triangle_of_Pascal_and_arithmetic_parallelepiped_On_possibility_of_new_evident_geometrical_interpretation_of_processes_in_long_pipes/links/55143cf50cf23203199d19b3.pdf
  80. Raphael Yuster, Vector clique decompositions, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (2019), 1221-1238. doi:10.1137/1.9781611975482.75 (A051337)

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.