This site is supported by donations to The OEIS Foundation.

CiteW

From OeisWiki
Jump to: navigation, search


"None of the presented results would have been obtained without the help of the online encyclopedia of integer sequences which gave the crucial hint by recognizing the 3-dimensional Catalan numbers." [Manuel Wettstein, 2016]

"It should be noted that the theoretical developments were greatly helped by us first plugging our computational results into the On-Line Encyclopedia of Integer Sequences (OEIS)." [G. Wu and M. G. Parker, 2013]

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with W.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. Carl G. Wagner, "Partition Statistics and q-Bell Numbers (q = -1)", J. Integer Sequences, Volume 7, 2004, Article 04.1.1.
  2. S. Wagner, Graph-theoretical enumeration and digital expansions: an analytic approach, Dissertation, Fakult. f. Tech. Math. u. Tech. Physik, Tech. Univ. Graz, Austria, Feb., 2006.
  3. Stacey Wagner, Enumerating Alternating Permutations with One Alternating Descent, DePaul Discoveries: Vol. 2: Iss. 1, Article 2. URL.
  4. STEPHAN WAGNER, ENUMERATION OF HIGHLY BALANCED TREES, PDF
  5. S. Wagner, Asymptotic enumeration of extensional acyclic digraphs, in Proceedings of the SIAM Meeting on Analytic Algorithmics and Combinatorics (ANALCO12); PDF
  6. Stephan Wagner, The Number of Fixed Points of Wilf's Partition Involution, The Electronic Journal of Combinatorics, 20(4) (2013), #P13
  7. S. G. Wagner, An identity for the cycle indices of rooted tree automorphism groups, Elec. J. Combinat., 13 (2006), #R00.
  8. Stephan Wagner, Volker Ziegler, Irrationality of growth constants associated with polynomial recursions, arXiv:2004.09353 [math.NT], 2020. (A000058, A003095, A076949)
  9. Stan Wagon, Graph Theory Problems from Hexagonal and Traditional Chess, THE COLLEGE MATHEMATICS JOURNAL, VOL. 45, NO. 4, SEPTEMBER 2014 pp. 278-287.
  10. Stan Wagon, ROUND FORMULAS FOR EXPONENTIAL POLYNOMIALS AND THE INCOMPLETE GAMMA FUNCTION, Integers, 16 (2016), #A79.
  11. S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32.
  12. Jonas Wahl, Traces On Diagram Algebras I: Free Partition Quantum Groups, Random Lattice Paths And Random Walks On Trees, arXiv:2006.07312 [math.PR], 2020. (A001006)
  13. Jonas Wahl, Traces on diagram algebras II: Centralizer algebras of easy groups and new variations of the Young graph, arXiv:2009.08181 [math.RT], 2020. (A001498)
  14. David Wakeham, Why is a soap bubble like a railway?, arXiv:2008.09611 [physics.pop-ph], 2020. Exercise 3.6. Physicist's induction. Calculate the number of tinkertoys T_h from h = 0 to h = 6. You should be able to find the general sequence T_h by searching for these numbers in the Online Encyclopedia of Integer Sequences. At large h, the OEIS informs us that this sequence grows exponentially, ...
  15. David Wakeham and David R. Wood, On multiplicative Sidon sets, INTEGERS, 13 (2013), #A26.
  16. Tanay Wakhare, Christophe Vignat, Settling some sum suppositions. arXiv:1805.10569 [math.NT], 2018. (A131823)
  17. Tanay Wakhare, Christophe Vignat, Taylor coefficients of the Jacobi θ3(q) function, arXiv:1909.01508 [math.NT], 2019. (A144849, A260779)
  18. M. Waldschmidt, Lectures on Multiple Zeta Values (IMSC 2011), PDF
  19. M. Waldschmidt, From highly composite numbers to transcendental number theory, 2013; PDF
  20. M. Waldschmidt, Lecture on the abc conjecture and some of its consequences, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore, 6th World Conference on 21st Century Mathematics 2013; http://www.sms.edu.pk/wc2013.php.
  21. M. Waldschmidt, Diophantine approximation with applications to dynamical systems, Papua New Guinea PNG University of Technology, International Conference on Pure and Applied Mathematics, ICPAM-LAE 2013, November 26-28, 2013; http://www.math.jussieu.fr/~miw/articles/pdf/ProcConfPNG2013.pdf
  22. Michel Waldschmidt, Continued fractions, École de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc) (A113011, A073333, A000217, A000290, A000326, A000384, A001110, A001653)
  23. Aled Walker, Alexander Walker, Arithmetic Progressions with Restricted Digits, arXiv:1809.02430 [math.NT], 2018. (A079277)
  24. Ian Walker, Explorations in Recursion with John Pell and the Pell Sequence, PDF.
  25. Janet M Walker and Matthew R McBurney, What Are The Next Three Terms In This Sequence?, Ohio Journal of School Mathematics, vol. 77, 2017.
  26. Robert Walker, Similar Sloth Canon Number Sequences
  27. M. Wallner, Lattice Path Combinatorics, Diplomarbeit, Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien, 2013; http://dmg.tuwien.ac.at/drmota/Thesis_Wallner.pdf
  28. Michael Wallner, Combinatorics of lattice paths and tree-like structures (Dissertation, Institut für Diskrete Mathematik und Geometrie, Technischen Universität Wien), 2016.
  29. Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017.
  30. Russell Walsmith, Binomial Product Expansion Matrices, Preprint, 2017; http://ixitol.com/BPEM.pdf
  31. Clayton A. Walvoort, Peg Solitaire on Trees with Diameter Four, Electronic Theses and Dissertations, East Tennessee State University, Paper 1113; http://dc.etsu.edu/etd/1113.
  32. James Wan arXiv:1101.1132 Moments of products of elliptic integrals.
  33. A. Y. Z. Wang, P. Wen, On the partial finite sums of the reciprocals of the Fibonacci numbers, Journal of Inequalities and Applications, 2015; http://www.journalofinequalitiesandapplications.com/content/2015/1/73
  34. Allen Wang, Permutations with Up-Down Signatures of Nonnegative Partial Sums, MIT PRIMES Conference (2018). PDF (A000246)
  35. Wang, Carol J. Catalan triangle, standard Young words and standard Young tableaux. Ars Combin. 113A (2014), 287-298.
  36. Carol J. Wang, Junjie Li, Pengjun Yin, Wave linked partitions and 312-avoiding permutations with primacy being 1, Applied Mathematics and Computation (2020) Vol. 367, 124773. doi:10.1016/j.amc.2019.124773
  37. Carol J. Wang, Z. Chen, The parity of the number of permutation tableaux in a fixed shape, Applied Mathematics and Computation, Volume 265, 15 August 2015, Pages 1090–1097.
  38. Charles M. Wang, Josephine Yu, Toric h-vectors and Chow Betti Numbers of Dual Hypersimplices, arXiv:1707.04581 [math.CO], 2017.
  39. Wang, Charles Zhao-Chen; Wang, Yi. Total positivity of Catalan triangle. Discrete Math. 338 (2015), no. 4, 566--568. MR3300743.
  40. Chen Wang, Two congruences concerning Apéry numbers, arXiv:1909.08983 [math.NT], 2019. (A005259)
  41. Chen Wang, On two conjectural supercongruences of Z.-W. Sun, arXiv:2003.09888 [math.NT], 2020. (A002426, A002895)
  42. Chen Wang, Two congruences concerning Apéry numbers conjectured by Z.-W. Sun, Electronic Research Archive (2020) Vol. 28, No. 2, 1063-1075. doi:10.3934/era.2020058 (A005259)
  43. Wang, Chenying, Piotr Miska, and István Mező. "The r-derangement numbers." Discrete Mathematics 340.7 (2017): 1681-1692.
  44. Chao-Jen Wang, Applications of the Goulden-Jackson cluster method to counting Dyck paths by occurrences of subwords, http://people.brandeis.edu/~gessel/homepage/students/wangthesis.pdf.
  45. Chen Wang, Zhi-Wei Sun, Congruences involving central trinomial coefficients, arXiv:1910.06850 [math.NT], 2019. (A001006, A002426)
  46. D. Wang, A. Mazumdar and G. W. Wornell, A Rate-Distortion Theory for Permutation Spaces, 2013; http://www.ece.umn.edu/~arya/papers/rd_isit13.pdf
  47. David G. L. Wang, T. Zhao, The peak and descent statistics over ballot permutations, arXiv:2009.05973 [math.CO], 2020. (A000246, A008292, A321280)
  48. Haoliang Wang, Robert Simon, The Analysis of Synchronous All-to-All Communication Protocols for Wireless Systems, Q2SWinet'18: Proceedings of the 14th ACM International Symposium on QoS and Security for Wireless and Mobile Networks (2018), 39-48. doi:10.1145/3267129.3267134 (A000248, A259760, A286910)
  49. Jin Wang, Nonlinear Inverse Relations for Bell Polynomials via the Lagrange Inversion Formula, J. Int. Seq., Vol. 22 (2019), Article 19.3.8. HTML (A111785, A133932, A134264, A178867, A187082, A263633)
  50. Kai Wang, Efficient Counting of Degree Sequences, arXiv preprint arXiv:1604.04148, 2017.
  51. Kai Wang, A Simple Method to Generate Integer Sequences, Open Access Library Journal (2019), Vol. 6, 1-35. doi:10.4236/oalib.1105502 (A000975, A001045, A006053, A006054, A006356, A028495, A033304, A052534, A052547, A077925, A077998, A078038, A085810, A094430, A094648, A096975, A096976, A106803, A108716, A109110, A109509, A116423, A120757, A122161, A122600, A136752, A136776, A152046, A180262, A181879, A199853, A214683, A215007, A215008, A215076, A215100, A215112, A215139, A215404, A215560, A215569, A215575, A215666, A215794, A215829, A217274, A219788, A248417, A271944, A271945, A274032, A274075, A274220, A274592, A274663, A274664, A274975, A275195, A275830, A275831, A287381, A287396, A287405, A320918)
  52. Kai Wang, Fibonacci Numbers And Trigonometric Functions Outline, xxxxxxx (2019). PDF (A000045, A001906, A005248, A006053, A006054, A020876, A039834, A061084, A093131, A094648, A096976, A106803, A122100, A123941, A188022, A215664, A215885, A274975)
  53. Kai Wang, Closed forms and identities for generalized Fibonacci sequences and generalized Lucas sequences outline, (2020). PDF (A020876, A093131)
  54. Kai Wang, On k-Fibonacci Sequences And Infinite Series List of Results and Examples, 2020. Abstract (A000045, A000129, A001076, A005668, A006190, A041025, A041041, A049666, A052918, A054413, A099371)
  55. Kai Wang, On Horadam sequences and related infinite series, (2020). doi:10.13140/RG.2.2.31326.25923
  56. Kai Wang, General identities for Horadam sequences, (2020). ">General identities for Horadam sequences Abstract
  57. Kai Wang, General identities for Horadam sequences revised III, (2020). doi:10.13140/RG.2.2.36662.11849 (A000032, A000045, A000129, A001045, A002203, A014551, A015518, A022088, A046717, A102345)
  58. Kai Wang, General identities for Horadam sequences revised III, (2020). PDF
  59. Kai Wang, Identities, generating functions and Binet formula for generalized k-nacci sequences, 2020. doi:10.13140/RG.2.2.19649.79209 (A000078, A073817, A073937, A074193, A100329)
  60. Kai Wang, Identities for generalized enneanacci numbers, Generalized Fibonacci Sequences (2020). PDF (A000051, A000073, A000078, A001591, A001592, A001644, A073145, A073817, A073937, A074048, A074062, A074584, A079262, A104144, A122189, A122265, A163551, A168082, A207539)
  61. Li-Yuan Wang, Zhi-Wei Sun, On practical numbers of some special forms, arXiv:1809.01532 [math.NT], 2018. (A294112)
  62. Qi Wang, τ-tilting finite simply connected algebras, arXiv:1910.01937 [math.RT], 2019. (A000245, A005807, A280891)
  63. Quiang Wang, On generalized Lucas sequences, Cont. Math. 531 (2010) 127-141
  64. Victor Y. Wang, On Hilbert 2-class fields and 2-towers of imaginary quadratic number fields, arXiv preprint arXiv:1508.06552, 2015
  65. Weiping Wang, Unified approaches to the approximations of the gamma function, Journal of Number Theory, Volume 163, June 2016, Pages 570–595
  66. Wang, Weiping; Wang, Tianming, Matrices related to the Bell polynomials. Linear Algebra Appl. 422 (2007), no. 1, 139-154.
  67. Wang, Weiping; Wang, Tianming Matrices related to the idempotent numbers and the numbers of planted forests. Ars Combin. 98 (2011), 83-96.
  68. Weiping Wang, Chenlu Zhang, Riordan arrays and related polynomial sequences, Linear Algebra and its Applications (2019) Vol. 580, 262-291. doi:10.1016/j.laa.2019.06.008
  69. Wenxi Wang, Muhammad Usman, Alyas Almaawi, Kaiyuan Wang, Kuldeep S. Meel, Sarfraz Khurshid, A Study of Symmetry Breaking Predicates and Model Counting, National University of Singapore (2020). PDF (A000108, A000170, A047659)
  70. Xiaoyuan Wang, Wenchang Chu, Further Ramanujan-like series containing harmonic numbers and squared binomial coefficients, The Ramanujan Journal (2019) 1-28. doi:10.1007/s11139-019-00140-5
  71. Yi Wang and Arthur L.B. Yang, Total positivity of Narayana matrices, arXiv:1702.07822 [math.CO], 2017. (A281260)
  72. Yi Wang and Bao-Xuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, arXiv preprint arXiv:1303.5595, 2013
  73. Zhilan Wang, Tautological Integrals on Hilbert Schemes of Points on Curves, arXiv preprint arXiv:1506.08405, 2015
  74. Zhi Lan Wang, Tautological Integrals on Symmetric Products of Curves, Acta Mathematica Sinica, English Series, Aug., 2016, Vol. 32, No. 8, pp. 901–910 doi:10.1007/s10114-016-5565-5
  75. Zhilan Wang and Jian Zhou, Generating series of intersection numbers on Hilbert schemes of points, Frontiers of Mathematics in China, Vol. 12, Issue 5, pp. 1247-1264. doi:10.1007/s11464-017-0686-5
  76. Zilong Wang and Guang Gong, New Sequences Design from Weil Representation with Low Two-Dimensional Correlation in Both Time and Phase Shifts (2008) arXiv:0812.4487
  77. Zuoqin Wang, The twisted Mellin transform (2007), arXiv:0706.2642.
  78. Wanless, Ian M., Permanents of matrices of signed ones. Linear Multilinear Algebra 53 (2005), no. 6, 427-433.
  79. I. M. Wanless, A computer enumeration of small latin trades, Australas. J. Combin. 39, (2007) 247-258.
  80. Stefan de Wannemacker, Thomas Laffey and Robert Osburn, On a conjecture of Wilf (2006), arXiv:math/0608085.
  81. Mike Warburton, Ulam-Warburton Automaton-Counting Cells with Quadratics, arXiv:1901.10565 [math.CO], 2019. (A130665)
  82. D. Watel, M.-A. Weisser, C. Bentz, D. Barth, An FPT algorithm in polynomial space for the directed Steiner tree problem with limited number of diffusing nodes, Information Processing Letters 115 (2015) 275-279.
  83. Wayne State University, College of Engineering, "COE YouTube channel reaches 2,000-view milestone", http://engineering.wayne.edu/news.php?id=7547
  84. R. Webster and G. Williams, On the trail of Reverse Divisors: 1089 and all that follow, Mathematical Spectrum, 45 (2012/2013), 96-102.
  85. Q. Wei, R. Onofrio, doi:10.1016/j.physleta.2010.03.035, Edge effects in electrostatic calibrations for the measurement of the Casimir force, Phys. Lett. A 374 (2010) 2230-2234.
  86. Yunlan Wei, Yanpeng Zheng, Zhaolin Jiang, Sugoog Shon, A Study of Determinants and Inverses for Periodic Tridiagonal Toeplitz Matrices with Perturbed Corners Involving Mersenne Numbers, Mathematics (2019) Vol. 7, No. 10, 893. doi:10.3390/math7100893 (A000668)
  87. C. Weibel, Algebraic K-Theory of Rings of Integers in Local and Global Fields (2005). In: Friedlander E., Grayson D. (eds) Handbook of K-Theory. Springer, Berlin, Heidelberg, doi:10.1007/978-3-540-27855-9_5
  88. A. Weingartner, On the Solutions of sigma(n) = sigma(n+k), Journal of Integer Sequences, Vol. 14 (2011), #11.5.5.
  89. F. V. Weinstein, Notes on Fibonacci partitions, Experimental Mathematics 25:4 (2016), pp. 482-499. arXiv:math/0307150.
  90. Michael Weiss, On the Distribution of Rational Squares, arXiv preprint arXiv:1510.07362, 2015
  91. Michael Weiss, Where Are the Rational Squares?, The American Mathematical Monthly, Vol. 124, No. 3 (March 2017), pp. 255-259. doi:10.4169/amer.math.monthly.124.3.255
  92. E. W. Weisstein, CRC Concise Encyclopedia of Mathematics. Boca Raton, FL: CRC Press, 1998. ISBN 0849396409.
  93. E. W. Weisstein's World of Mathematics.
  94. T. Weist, On the Euler characteristic of Kronecker moduli spaces, Arxiv preprint arXiv:1203.2740, 2012 and J. Alg. Comb. 38 (3) (2013) 567 doi:10.1007/s10801-012-0415-8
  95. Pascal Welke, Tamás Horváth, Stefan Wrobel, Probabilistic and exact frequent subtree mining in graphs beyond forests, Machine Learning (2019), 1–28. doi:10.1007/s10994-019-05779-1 (A000055)
  96. David Wells, Prime Numbers: The Most Mysterious Figures in Math, Wiley, 2005.
  97. Yang Wen, On the Log-Concavity of the Root of the Catalan-Larcombe-French Numbers, American Journal of Mathematical and Computer Modelling, 2017; 2(4): 95-98, http://www.sciencepublishinggroup.com/j/ajmcm, doi:10.11648/j.ajmcm.20170204.11; https://pdfs.semanticscholar.org/76a9/616f193a329add50dbf4481e25b797edce8b.pdf
  98. Matthias Wendt, Oriented Schubert calculus in Chow-Witt rings of Grassmannians, arXiv:1808.07296 [math.AG], 2018.
  99. Z. Weng, P. M. Djuric, Efficient learning by consensus over regular networks, in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, 4-9 May 2014, Pages: 7253 - 7257 INSPEC Accession Number: 14448553 doi:10.1109/ICASSP.2014.6855008
  100. M. Werner, An Algorithmic Approach for the Zarankiewicz Problem, http://tubafun.bplaced.net/public/zarankiewicz_paper_presentation.pdf, 2012.
  101. Andrew West, Bound Optimization for Parallel Quadratic Sieving Using Large Prime Variations (A126726)
  102. Julian West, Sorting twice through a stack, Theoretical Computer Science, Volume 117, Issues 1-2, 30 August 1993, Pages 303-313.
  103. J. West, Permutation trees and the Catalan and Schroeder numbers, Discrete Math., 146: 247-262 (1995).
  104. Bruce W. Westbury, Invariant tensors for the spin representation of so(7) (2006), arXiv:math/0601209.
  105. B. W. Westbury, Enumeration of non-positive planar trivalent graphs, J. Alg. Comb. 25 (2007) 357 doi:10.1007/s10801-006-0041-4
  106. Wetherell, Chris. Colour by numbers. Australian Mathematics Teacher, Vol. 73, No. 3, 2017: 38-40. <https://search.informit.com.au/documentSummary;dn=123641155304878;res=IELHSS> ISSN: 0045-0685.
  107. Manuel Wettstein, Trapezoidal Diagrams, Upward Triangulations, and Prime Catalan Numbers, arXiv:1602.07235, 2016. ["None of the presented results would have been obtained without the help of the online encyclopedia of integer sequences which gave the crucial hint by recognizing the 3-dimensional Catalan numbers"]
  108. D. White, M. Anderson, Using a Superfactorial Problem to Provide Extended Problem-Solving Experiences, PRIMUS (2020). doi:10.1080/10511970.2020.1809039
  109. Tad White, Counting free Abelian actions, arXiv:1304.2830
  110. Earl Glen Whitehead Jr., Stirling number identities from chromatic polynomials, Journal of Combinatorial Theory, Series A, Volume 24, Issue 3, May 1978, Pages 314-317.
  111. Ward. O. Whitt, Weirdness in CTMC's, Notes for Course IEOR 6711: Stochastic Models I, http://www.columbia.edu/~ww2040/6711F12/lect1129.pdf, 2012.
  112. M. Whittaker, Topological spaces associated to higher-rank graphs, 2013; http://www.michaelwhittaker.ca/TopologicalRealisations_AustMS2013.pdf
  113. Robin W. Whitty, Rook polynomials on two-dimensional surfaces and graceful labellings of graphs, Discrete Mathematics, Volume 308, Issues 5-6, 28 March 2008, Pages 674-683.
  114. Ridlo W. Wibowo, Introducing Fermat Sequences, J. Phys.: Conf. Ser. 1245 (2019), 012048. doi:10.1088/1742-6596/1245/1/012048 (A078753)
  115. W. Wieczorek, A Nowakowski, Grammatical Inference in the Discovery of Generating Functions, in Man–Machine Interactions 4, 2016, 4th International Conference on Man–Machine Interactions, ICMMI 2015 Kocierz Pass, Poland, October 6–9, Pages pp 627-637, Springer 2015; doi:10.1007/978-3-319-23437-3_54
  116. Thomas Wieder, The number of certain k-combinations of a n-set, Applied Mathematics Electronic Notes, vol. 7 (2007), 45-52.
  117. Thomas Wieder, The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets, Appl. Math. Sci., vol. 3(55) (2009), 2707-2724.
  118. Thomas Wieder, doi:10.3968/j.pam.1925252820110201.010 Generation of All Possible Multiselections from a Multiset, Progress in Applied Mathematics, 2(1) (2011), 61-66.
  119. Thomas Wieder, The Debye scattering formula in n dimensions, Journal of Mathematical and Computational Science, vol. 2 no. 4 (2012), 1086-1090.
  120. Thomas Wiehe, Counting, grafting and evolving binary trees, arXiv:2010.06409 [q-bio.PE], 2020. (A000108, A000111, A000142, A000169, A001147, A001190, A006472)
  121. Tom Wiesing, Michael Kohlhase, Florian Rabe, Virtual Theories – A Uniform Interface to Mathematical Knowledge Bases, Mathematical Aspects of Computer and Information Sciences (MACIS) 2017. Lecture Notes in Computer Science, Vol. 10693. doi:10.1007/978-3-319-72453-9_17
  122. WikiMili, Eight queens puzzle, (2019). html (A000170, A002562)
  123. Wikipedia, Dynamic Programming
  124. Wild, Marcel Counting or producing all fixed cardinality transversals. Algorithmica 69 (2014), no. 1, 117-129.
  125. Wildforests, "Cicada", http://wiki.wildforests.co/topic/Cicada, See Footnote 15; visited Dec. 2012.
  126. D. Jacob Wildstrom, doi:10.1016/j.laa.2010.03.028 Dynamic resource location with tropical algebra, Lin. Alg. Applic. (2011) (in press)
  127. D. J. Wildstrom, Structural Qualities and Serial Construction of Tournament Braids, in Bridges 2012: Mathematics, Music, Art, Architecture, Culture; http://bridgesmathart.org/2012/cdrom/proceedings/98/paper_98.pdf
  128. D. J. Wildstrom, Design and serial construction of digraph braids, Journal of Mathematics and the Arts, Volume 9, Issue 1-2, 2015.
  129. Herbert S. Wilf, The Redheffer matrix of a partially ordered set, The Electronic Journal of Combinatorics, Volume 11(2), 2004, R#10.
  130. Herbert S. Wilf, Mathematics: An Experimental Science, 2005, Draft of a chapter for the forthcoming volume "The Princeton Companion to Mathematics," edited by Tim Gowers.
  131. Robert J. Wilkin, Neverlution: Dismantling the Theory of Evolution One Amino Acid at a Time, WestBow Press, Bloomington, IN, 2017. (A000142)
  132. Hugh Williams, R. K. Guy, doi:10.1142/S1793042111004587 Some fourth-order linear divisibility sequences, Intl. J. Number Theory vol. 7 (5) (2011) 1255-1277
  133. H. C. Williams and R. K. Guy, Odd and even linear divisibility sequences of order 4, INTEGERS, 2015, #A33.
  134. N. Williams, On Eliminating Square Paths in a Square Lattice, Master's Thesis, Rice University, 2000.
  135. Ryan Williams, Applying Practice to Theory (2008) arXiv:0811.1305
  136. Andreas Willig, Autonomous allocation of wireless body-sensor networks to frequency channels: modeling with repeated "balls-in-bins" experiments, Wireless Networks (2018), 1-18. doi:10.1007/s11276-018-1777-1
  137. Andrew T. Wilson, Torus link homology and the nabla operator, arXiv preprint arXiv:1606.00764, 2016
  138. David W. Wilson, "The Fifth Taxicab Number is 48988659276962496", J. Integer Sequences, Volume 2, 1999, Article 99.1.9.
  139. Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes, http://www.cs.auckland.ac.nz/~mcw/Research/Outputs/Wils2013.pdf.
  140. John D. Wiltshire-Gordon, Alexander Woo, Magdalena Zajaczkowska. Specht Polytopes and Specht Matroids. arXiv:1701.05277 [math.CO], 2017. ["We make the following conjecture with the help of the OEIS" (Conjecture 6.2)]
  141. David Kofoed Wind, CONNECTED GRAPHS WITH FEWEST SPANNING TREES, BACHELOR THESIS, SPRING 2011, http://www.student.dtu.dk/~s082951/publications/thesis.pdf
  142. Donald A. Windsor, Canonical model for taxonomy based on partition of integers, SciAesthetics Essays (2020), 1-19. doi:10.13140/RG.2.2.30563.99362 (A000041)
  143. R. Winkel, An exponential formula for polynomial vector fields II. Lie series, exponential substitution and rooted trees. Adv. Math. 147 (1999), no. 2, 260-303.
  144. M. Winkler, On a stopping time algorithm of the 3n+ 1 function, http://mike-winkler.net/collatz_algorithm.pdf.
  145. Mike Winkler, On the structure and the behaviour of Collatz 3n+ 1 sequences, 2014; http://mikewinkler.co.nf/collatz_structure_2014.pdf; arXiv preprint arXiv:1412.0519, 2014
  146. M. Winkler, New results on the stopping time behaviour of the Collatz 3x+ 1 function, arXiv preprint arXiv:1504.00212, 2015
  147. Mike Winkler, The algorithmic structure of the finite stopping time behavior of the 3x+ 1 function, arXiv:1709.03385 [math.GM], 2017
  148. Mike Winkler, The Recursive Stopping Time Structure of the 3x+ 1 Function, 2018. PDF (A020914, A020915, A022921, A056576, A076227, A100982, A177789, A293308)
  149. Mike Winkler, An Approach to a Simple Proof of Fermat's Last Theorem. 2018. PDF (A219539)
  150. Joost Winter, QStream: A Suite of Streams, 2013; http://homepages.cwi.nl/~winter/articles/calcotools13.pdf
  151. J. Winter, M. M. Bonsangue and J. J. M. M. Rutten, Context-free coalgebras, 2013; PDF
  152. Yoad Winter and Remko Scha, Plurals, draft chapter for the Wiley-Blackwell Handbook of Contemporary Semantics - second edition, edited by Shalom Lappin and Chris Fox, 2014; http://www.phil.uu.nl/~yoad/papers/WinterSchaPlurals.pdf
  153. Gus Wiseman, Every Clutter Is a Tree of Blobs, The Mathematica Journal, Vol. 19, 2017; http://www.mathematica-journal.com/2017/12/every-clutter-is-a-tree-of-blobs/
  154. H. M. Wiseman and J. Eisert, Nontrivial quantum effects in biology: A skeptical physicists' view (2007), arXiv:0705.1232.
  155. H. A. Witek, G. Moś, C.-P. Choua, Zhang-Zhang Polynomials of Regular 3-and 4-tier Benzenoid Strips, MATCH Commun. Math. Comput. Chem. 73 (2015) 427-442.
  156. Shawn L. Witte, Link Nomenclature, Random Grid Diagrams, and Markov Chain Methods in Knot Theory, Ph. D. Dissertation, University of California-Davis (2020). PDF (A008306, A010790, A082491)
  157. R. Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2pi/7, JIS 12 (2009) 09.8.5
  158. R. Witula, Full Description of Ramanujan Cubic Polynomials, J. Int. Seq. 13 (2010) 10.5.7
  159. R. Witula, Ramanujan type trigonometric formulae, DEMONSTRATIO MATHEMATICA, Vol. XLV, No. 4, 2012, pp. 789-796; http://www.mini.pw.edu.pl/~demmath/archive/dm45_4/galleys/3.pdf
  160. R. Witula, P. Lorenc, M. Rozanski, M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, 2014; http://mat.polsl.pl/zn/zeszyty/z4/znps_mat_stos_04_2014_str_017-034.pdf
  161. Roman Wituła and Damian Sota, "Quasi-Fibonacci Numbers of Order 11", J. Integer Sequences, Volume 10, 2007, Article 07.8.5.
  162. Roman Wituła and Damian Sota, "New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7", J. Integer Sequences, Volume 10, 2007, Article 07.5.6.
  163. Roman Wituła, Damian Sota and Adam Warzyski, "Quasi-Fibonacci Numbers of the Seventh Order", J. Integer Sequences, Volume 9, 2006, Article 06.4.3.
  164. I. Wloch, U. Bednarz, D. Bród, A Wloch and M. Wolowiec-Musial, On a new type of distance Fibonacci numbers, Discrete Applied Math., Volume 161, Issues 16-17, November 2013, Pages 2695-2701.
  165. Wen-Jin Woan, "Hankel Matrices and Lattice Paths", J. Integer Sequences, Volume 4, 2001, Article 01.1.2.
  166. Wen-Jin Woan, Diagonal lattice paths. Congr. Numerantium 151 (2001) 173-178
  167. Wen-jin Woan, "A Recursive Relation for Weighted Motzkin Sequences", J. Integer Sequences, Volume 8, 2005, Article 05.1.6.
  168. Wen-jin Woan, "Animals And 2-Motzkin Paths", J. Integer Sequences, Volume 8, 2005, Article 05.5.6.
  169. Wen-jin Woan, "A Relation Between Restricted and Unrestricted Weighted Motzkin Paths", J. Integer Sequences, Volume 9, 2006, Article 06.1.7.
  170. Wen-jin Woan and Barbara Tankersley, "Exponential Generating Functions for Trees with Weighted Edges and Labeled Nodes", J. Integer Sequences, Volume 10, 2007, Article 07.8.4.
  171. J. Wodlinger, COSTAS ARRAYS, GOLOMB RULERS AND WAVELENGTH ISOLATION SEQUENCE PAIRS, M.S. Dissertation, Math. Dept., Simon Fraser University, Spring 2012; http://people.math.sfu.ca/~jed/Papers/Jane%20Wodlinger.%20Master's%20Thesis.%202012.pdf.
  172. G. J. Woeginger, Nothing new about equiangular polygons, Amer. Math. Monthly, 120 (2013), 849-850.
  173. Gregory Gerard Wojnar, Daniel Sz. Wojnar, Leon Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, arXiv:1706.08381 [math.GM], 2017.
  174. Wójtowicz, Marek, Robin's inequality and the Riemann hypothesis. Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 4, 47-49.
  175. Marc Wolf, François Wolf, Representation theorem of composite odd numbers indices, SCIREA Journal of Mathematics (2018) 3.3, 106-117. HTML also PDF (A153238)
  176. WolframAlpha, Timeline of Systematic Data and the Development of Computable Knowledge (see 1973).
  177. Jesse Wolfson, Tschirnhaus transformations after Hilbert, arXiv:2001.06515 [math.AG], 2020. (A000905)
  178. Christian Woll, There is a 3X3 Magic Square of Squares on the Moon - A Lot of Them, Actually, arXiv:1811.04923 [math.HO], 2018. Also Mathematical Intelligencer (2019), 1-4. doi:10.1007/s00283-018-09866-4 (A087019)
  179. Zack Wolske, Number Fields with Large Minimal Index, Ph.D. Thesis, University of Toronto, 2018. PDF (A065474)
  180. Elisabeth Wong, Brittany Baur, Saad Quader and Chun-Hsi Huang, Biological network motif detection: principles and practice, Briefings in Bioinformatics, 2011, doi:10.1093/bib/bbr033.
  181. Siman Wong, Specialization of Galois groups and integral points on elliptic curves, Proceedings of the American Mathematical Society, 145 (2017), 5179-5190. doi:10.1090/proc/13677
  182. Sung Sik Woo, Cubic formula and cubic curves, Commun. Korean Math. Soc. 28 (2013), No. 2, pp. 209-224; doi:10.4134/CKMS.2013.28.2.209; PDF
  183. Anthony James Wood, Nonequilibrium steady states from a random-walk perspective, Ph. D. Thesis, The University of Edinburgh (Scotland, UK 2019). PDF (A001263, A008292, A196148)
  184. Anthony J. Wood, Richard A. Blythe, Martin R. Evans, Renyi entropy of the totally asymmetric exclusion process, arXiv:1708.00303 [cond-mat.stat-mech], 2017.
  185. Anthony J. Wood, Richard A. Blythe, Martin R. Evans, Combinatorial mappings of exclusion processes, arXiv:1908.00942 [cond-mat.stat-mech], 2019. (A001263, A008292, A111910 A196148)
  186. Roger Woodford, "Bounds for the Eventual Positivity of Difference Functions of Partitions into Prime Powers", J. Integer Sequences, Volume 10, 2007, Article 07.1.3.
  187. John Wright, A recursive solution for Turing's H-M factor, Cryptologia, 40 (2016), issue 4, pp. 327-347; doi:10.1080/01611194.2015.1062318
  188. Chai Wah Wu, Pigeonholes and repunits, Amer. Math. Monthly, 121 (2014), 529-533.
  189. Chai Wah Wu, Graphs whose normalized Laplacian matrices are separable as density matrices in quantum mechanics, arXiv preprint arXiv:1407.5663, 2014
  190. Chai Wah Wu, Meertens Number and Its Variations, IBM Research Report RC25531 (WAT1504-032) April 2015 (A246532)
  191. Chai Wah Wu, On a conjecture regarding primality of numbers constructed from prepending and appending identical digits, arXiv preprint arXiv:1503.08883, 2015
  192. Chai Wah Wu, Counting the number of isosceles triangles in rectangular regular grids, arXiv:1605.00180, 2016.
  193. Chai Wah Wu, Minimal number of points on a grid forming patterns of blocks, arXiv:1608.07247 [math.CO], 2016
  194. Chai Wah Wu, Sums of products of binomial coefficients mod 2 and run length transforms of sequences, arXiv preprint arXiv:1610.06166, 2016
  195. Chai Wah Wu, Can machine learning identify interesting mathematics? An exploration using empirically observed laws. arXiv:1805.07431 [cs.LG], 2018. (A000038, A000668, A005408, A055165, A034388)
  196. Chai Wah Wu, Record values in appending and prepending bitstrings to runs of binary digits, arXiv:1810.02293 [math.NT], 2018. (A003714, A003796, A086638, A156064, A175046, A318921, A319422, A319423, A319424)
  197. Chai Wah Wu, On rearrangement inequalities for multiple sequences, arXiv:2002.10514 [math.CO], 2020. (A072368, A260355, A331889, A331988, A333420, A333445, A333446)
  198. D. Wu, K. Addanki, M. Saers, Freestyle: A Challenge-Response System for Hip Hop Lyrics via Unsupervised Induction of Stochastic Transduction Grammars, in INTERSPEECH 2013, 25-29 August 2013, Lyon, France, pp. 3478-3482; http://www.cse.ust.hk/~dekai/library/WU_Dekai/WuAddankiSaers_Interspeech2013.pdf
  199. Dekai Wu, K. Addanki and M. Saers, Modeling Hip Hop Challenge Response Lyrics as Machine Translation, in Sima'an, K., Forcada, M.L., Grasmick, D., Depraetere, H., Way, A. (eds.) Proceedings of the XIV Machine Translation Summit (Nice, September 2-6, 2013), p. 109-116; http://www.mtsummit2013.info/files/proceedings/main/mt-summit-2013-addanki-et-al.pdf
  200. G. Wu, M. G. Parker, A complementary construction using mutually unbiased bases, arXiv preprint arXiv:1309.0157, 2013 ["It should be noted that the theoretical developments were greatly helped by us first plugging our computational results into the On-Line Encyclopedia of Integer Sequences (OEIS)"]
  201. Hai-Liang Wu and Zhi-Wei Sun, Some universal quadratic sums over the integers, arXiv:1707.06223 [math.NT], 2017.
  202. Hai-Liang Wu, Zhi-Wei Sun, Arithmetic progressions represented by diagonal ternary quadratic forms, arXiv:1811.05855 [math.NT], 2018. (A286885)
  203. Tony F. Wu, K. Ganesan, A. Hu, H.-S. P. Wong, S. Wong, S. Mitra, TPAD: Hardware Trojan Prevention and Detection for Trusted Integrated Circuits, arXiv preprint arXiv:1505.02211, 2015
  204. E. Wulcan, Pattern avoidance in involutions (Masters thesis) (ps, pdf).
  205. J. Wuttke, Multiple Bragg reflection by a thick mosaic crystal, Acta Cryst. (2014). A70, 429-440 doi:10.1107/S205327331400802X
  206. B. G. Wybourne, Admissible partitions and the expansion of the square of the Vandermonde determinant in N variables, 2003.
  207. Ed Wynn, Exhaustive generation of Mrs Perkins's quilt square dissectiosn for low orders, arXiv:1308.5420, 2013.
  208. Ed Wynn, Enumeration of nonisomorphic Hamiltonian cycles on square grid graphs, arXiv preprint arXiv:1402.0545, 2014.
  209. Ed Wynn, A comparison of encodings for cardinality constraints in a SAT solver, arXiv:1810.12975 [cs.LO], 2018. (A152125, A227116, A240443, A319158, A319159)

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.