This site is supported by donations to The OEIS Foundation.

CiteW

From OeisWiki
Jump to: navigation, search


"None of the presented results would have been obtained without the help of the online encyclopedia of integer sequences which gave the crucial hint by recognizing the 3-dimensional Catalan numbers." [Manuel Wettstein, 2016]

"It should be noted that the theoretical developments were greatly helped by us first plugging our computational results into the On-Line Encyclopedia of Integer Sequences (OEIS)." [G. Wu and M. G. Parker, 2013]

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with W.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. Richard D. Wade and Benjamin Brück, A note on virtual duality and automorphism groups of right-angled Artin groups, arXiv:2101.08225 [math.GR], 2021. (A000088)
  2. Carl G. Wagner, "Partition Statistics and q-Bell Numbers (q = -1)", J. Integer Sequences, Volume 7, 2004, Article 04.1.1.
  3. Rafael Wagner, Rui Soares Barbosa, and Ernesto F. Galvão, Inequalities witnessing coherence, nonlocality, and contextuality, arXiv:2209.02670 [quant-ph], 2022. (A000110)
  4. S. Wagner, Graph-theoretical enumeration and digital expansions: an analytic approach, Dissertation, Fakult. f. Tech. Math. u. Tech. Physik, Tech. Univ. Graz, Austria, Feb., 2006.
  5. Stacey Wagner, Enumerating Alternating Permutations with One Alternating Descent, DePaul Discoveries: Vol. 2: Iss. 1, Article 2. URL.
  6. Stephan Wagner, ENUMERATION OF HIGHLY BALANCED TREES, PDF
  7. Stephan Wagner, Asymptotic enumeration of extensional acyclic digraphs, in Proc. SIAM Meeting Anal. Algor. Comb. (ANALCO 2012). doi:10.1137/1.9781611973020.1 also PDF (A001192)
  8. Stephan Wagner, The Number of Fixed Points of Wilf's Partition Involution, The Electronic Journal of Combinatorics, 20(4) (2013), #P13
  9. S. G. Wagner, An identity for the cycle indices of rooted tree automorphism groups, Elec. J. Combinat., 13 (2006), #R00.
  10. Stephan Wagner, Volker Ziegler, Irrationality of growth constants associated with polynomial recursions, arXiv:2004.09353 [math.NT], 2020. (A000058, A003095, A076949)
  11. Stan Wagon, Graph Theory Problems from Hexagonal and Traditional Chess, THE COLLEGE MATHEMATICS JOURNAL, VOL. 45, NO. 4, SEPTEMBER 2014 pp. 278-287.
  12. Stan Wagon, ROUND FORMULAS FOR EXPONENTIAL POLYNOMIALS AND THE INCOMPLETE GAMMA FUNCTION, Integers, 16 (2016), #A79.
  13. S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32.
  14. Samuel S. Wagstaff, Jr., Equal Sums of Two Distinct Like Powers, J. Int. Seq., Vol. 25 (2022), Article 22.3.1. HTML (A003336, A003347, A003358, A004999)
  15. Lilith Wagstrom, The Tree-Depth and Criticality of Unicyclic Graphs, Masters' Thesis, Univ. Rhode Is. (2023), 30420017. Abstract
  16. Jonas Wahl, Traces On Diagram Algebras I: Free Partition Quantum Groups, Random Lattice Paths And Random Walks On Trees, arXiv:2006.07312 [math.PR], 2020. (A001006)
  17. Jonas Wahl, Traces on diagram algebras II: Centralizer algebras of easy groups and new variations of the Young graph, arXiv:2009.08181 [math.RT], 2020. (A001498)
  18. David Wakeham, Why is a soap bubble like a railway?, arXiv:2008.09611 [physics.pop-ph], 2020. Exercise 3.6. Physicist's induction. Calculate the number of tinkertoys T_h from h = 0 to h = 6. You should be able to find the general sequence T_h by searching for these numbers in the Online Encyclopedia of Integer Sequences. At large h, the OEIS informs us that this sequence grows exponentially, ...
  19. David Wakeham and David R. Wood, On multiplicative Sidon sets, INTEGERS, 13 (2013), #A26.
  20. Tanay Wakhare, Two Studies of Constraints in High Dimensions: Entropy Inequalities and the Randomized Symmetric Binary Perceptron, Master's Thesis, MIT (2024). See p. 22. Abstract (A108267)
  21. Tanay Wakhare, Christophe Vignat, Settling some sum suppositions. arXiv:1805.10569 [math.NT], 2018. (A131823)
  22. Tanay Wakhare, Christophe Vignat, Taylor coefficients of the Jacobi θ3(q) function, arXiv:1909.01508 [math.NT], 2019. (A144849, A260779)
  23. Gustaf Waldemarson and Michael Doggett, Succinct Opacity Micromaps, Proc. ACM Comput. Graph. Interact. Tech. (2024) Vol. 7, No. 3, Article 45. See p. 45:4. doi:10.1145/3675385 (A000108)
  24. M. Waldschmidt, Lectures on Multiple Zeta Values (IMSC 2011), PDF
  25. M. Waldschmidt, From highly composite numbers to transcendental number theory, 2013; PDF
  26. M. Waldschmidt, Lecture on the abc conjecture and some of its consequences, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore, 6th World Conference on 21st Century Mathematics 2013; http://www.sms.edu.pk/wc2013.php.
  27. M. Waldschmidt, Diophantine approximation with applications to dynamical systems, Papua New Guinea PNG University of Technology, International Conference on Pure and Applied Mathematics, ICPAM-LAE 2013, November 26-28, 2013; http://www.math.jussieu.fr/~miw/articles/pdf/ProcConfPNG2013.pdf
  28. Michel Waldschmidt, Continued fractions, École de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc) (A113011, A073333, A000217, A000290, A000326, A000384, A001110, A001653)
  29. Aled Walker, Alexander Walker, Arithmetic Progressions with Restricted Digits, arXiv:1809.02430 [math.NT], 2018. (A079277)
  30. Ian Walker, Explorations in Recursion with John Pell and the Pell Sequence, PDF.
  31. Janet M Walker and Matthew R McBurney, What Are The Next Three Terms In This Sequence?, Ohio Journal of School Mathematics, vol. 77, 2017.
  32. Robert Walker, Similar Sloth Canon Number Sequences
  33. M. Wallner, Lattice Path Combinatorics, Diplomarbeit, Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien, 2013; http://dmg.tuwien.ac.at/drmota/Thesis_Wallner.pdf
  34. Michael Wallner, Combinatorics of lattice paths and tree-like structures (Dissertation, Institut für Diskrete Mathematik und Geometrie, Technischen Universität Wien), 2016.
  35. Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017.
  36. Michael Wallner, On the critical exponents of generalized ballot sequences in three dimensions and large tandem walks, arXiv:2105.12155 [math.CO], 2021, see p. 5.
  37. Toby Walsh, Faking It: Artificial Intelligence in a Human World, The History Press, 2023. ISBN 1803994606, 9781803994604. (A009087, A033950)
  38. Russell Walsmith, Binomial Product Expansion Matrices, Preprint, 2017; http://ixitol.com/BPEM.pdf
  39. Clayton A. Walvoort, Peg Solitaire on Trees with Diameter Four, Electronic Theses and Dissertations, East Tennessee State University, Paper 1113; http://dc.etsu.edu/etd/1113.
  40. James Wan arXiv:1101.1132 Moments of products of elliptic integrals.
  41. A. Y. Z. Wang, P. Wen, On the partial finite sums of the reciprocals of the Fibonacci numbers, Journal of Inequalities and Applications, 2015; http://www.journalofinequalitiesandapplications.com/content/2015/1/73
  42. Allen Wang, Permutations with Up-Down Signatures of Nonnegative Partial Sums, MIT PRIMES Conference (2018). PDF (A000246)
  43. Bo Wang and Candice X.T. Zhang, Interlacing property of a family of generating polynomials over Dyck paths, arXiv:2309.05903 [math.CO], 2023. (A000108, A281260)
  44. Wang, Carol J. Catalan triangle, standard Young words and standard Young tableaux. Ars Combin. 113A (2014), 287-298.
  45. Carol J. Wang, Junjie Li, Pengjun Yin, Wave linked partitions and 312-avoiding permutations with primacy being 1, Applied Mathematics and Computation (2020) Vol. 367, 124773. doi:10.1016/j.amc.2019.124773
  46. Carol J. Wang, Z. Chen, The parity of the number of permutation tableaux in a fixed shape, Applied Mathematics and Computation, Volume 265, 15 August 2015, Pages 1090–1097.
  47. Charles Wang, Towards cluster duality for Lagrangian and orthogonal Grassmannians, J. Symbolic Comp. (2023) Vol. 114, 102-121. doi:10.1016/j.jsc.2022.04.018
  48. Charles M. Wang, Josephine Yu, Toric h-vectors and Chow Betti Numbers of Dual Hypersimplices, arXiv:1707.04581 [math.CO], 2017.
  49. Wang, Charles Zhao-Chen; Wang, Yi. Total positivity of Catalan triangle. Discrete Math. 338 (2015), no. 4, 566--568. MR3300743.
  50. Chen Wang, Two congruences concerning Apéry numbers, arXiv:1909.08983 [math.NT], 2019. (A005259)
  51. Chen Wang, On two conjectural supercongruences of Z.-W. Sun, arXiv:2003.09888 [math.NT], 2020. (A002426, A002895)
  52. Chen Wang, Two congruences concerning Apéry numbers conjectured by Z.-W. Sun, Electronic Research Archive (2020) Vol. 28, No. 2, 1063-1075. doi:10.3934/era.2020058 (A005259)
  53. Chen Wang and Wei Xia, Proof of Two Congruences Concerning Legendre Polynomials, Results in Mathematics (2021) Vol. 76, Art. No. 90. doi:10.1007/s00025-021-01389-3
  54. Wang, Chenying, Piotr Miska, and István Mező. "The r-derangement numbers." Discrete Mathematics 340.7 (2017): 1681-1692.
  55. Chao-Jen Wang, Applications of the Goulden-Jackson cluster method to counting Dyck paths by occurrences of subwords, http://people.brandeis.edu/~gessel/homepage/students/wangthesis.pdf.
  56. Chen Wang, Zhi-Wei Sun, Congruences involving central trinomial coefficients, arXiv:1910.06850 [math.NT], 2019. (A001006, A002426)
  57. D. Wang, A. Mazumdar and G. W. Wornell, A Rate-Distortion Theory for Permutation Spaces, 2013; http://www.ece.umn.edu/~arya/papers/rd_isit13.pdf
  58. David G. L. Wang, T. Zhao, The peak and descent statistics over ballot permutations, arXiv:2009.05973 [math.CO], 2020. (A000246, A008292, A321280)
  59. Han Wang and Zhi-Wei Sun, On two new kinds of restricted sumsets, arXiv:2210.12044 [math.NT], 2022. (A357130)
  60. Han Wang and Zhi-Wei Sun, Characteristic polynomials of the matrices with (j, k)-entry q(j±k) + t, Bull. Australian Math. Soc. (2024). See references. doi:10.1017/S000497272400039X (A079034, A355175, A355326)
  61. Haoliang Wang, Robert Simon, The Analysis of Synchronous All-to-All Communication Protocols for Wireless Systems, Q2SWinet'18: Proceedings of the 14th ACM International Symposium on QoS and Security for Wireless and Mobile Networks (2018), 39-48. doi:10.1145/3267129.3267134 (A000248, A259760, A286910)
  62. Hsin-Po Wang and Chi-Wei Chin, On Counting Subsequences and Higher-Order Fibonacci Numbers, arXiv:2405.17499 [cs.IT], 2024. See p. 2. (A000045, A000071, A000073, A048887, A092921)
  63. Hsin-Po Wang and Vlad-Florin Drăgoi, Fast Methods for Ranking Synthetic BECs, arXiv:2304.11781 [cs.IT], 2023. (A010060)
  64. Hui Wang, Mengman Liu, Chuhua Ding, and Yi Ding, A systematic method of generating hinged tessellations by adding hinged plates based on dual graphs, Frontiers Archit. Res. (2024). See Table 1. doi:10.1016/j.foar.2024.08.002 (A068599)
  65. Jin Wang, Nonlinear Inverse Relations for Bell Polynomials via the Lagrange Inversion Formula, J. Int. Seq., Vol. 22 (2019), Article 19.3.8. HTML (A111785, A133932, A134264, A178867, A187082, A263633)
  66. Jin Wang, Xinrong Ma, Some nonlinear inverse relations of Bell polynomials via the Lagrange inversion formula, arXiv:2012.03412 [math.CO], 2020.
  67. Kai Wang, Efficient Counting of Degree Sequences, arXiv preprint arXiv:1604.04148, 2017.
  68. Kai Wang, A Simple Method to Generate Integer Sequences, Open Access Library Journal (2019), Vol. 6, 1-35. doi:10.4236/oalib.1105502 (A000975, A001045, A006053, A006054, A006356, A028495, A033304, A052534, A052547, A077925, A077998, A078038, A085810, A094430, A094648, A096975, A096976, A106803, A108716, A109110, A109509, A116423, A120757, A122161, A122600, A136752, A136776, A152046, A180262, A181879, A199853, A214683, A215007, A215008, A215076, A215100, A215112, A215139, A215404, A215560, A215569, A215575, A215666, A215794, A215829, A217274, A219788, A248417, A271944, A271945, A274032, A274075, A274220, A274592, A274663, A274664, A274975, A275195, A275830, A275831, A287381, A287396, A287405, A320918)
  69. Kai Wang, Fibonacci Numbers And Trigonometric Functions Outline, (2019). PDF (A000045, A001906, A005248, A006053, A006054, A020876, A039834, A061084, A093131, A094648, A096976, A106803, A122100, A123941, A188022, A215664, A215885, A274975)
  70. Kai Wang, Closed forms and identities for generalized Fibonacci sequences and generalized Lucas sequences outline, (2020). PDF (A020876, A093131)
  71. Kai Wang, On k-Fibonacci Sequences And Infinite Series List of Results and Examples, 2020. Abstract (A000045, A000129, A001076, A005668, A006190, A041025, A041041, A049666, A052918, A054413, A099371)
  72. Kai Wang, On Horadam sequences and related infinite series, (2020). doi:10.13140/RG.2.2.31326.25923
  73. Kai Wang, General identities for Horadam sequences, (2020). ">General identities for Horadam sequences Abstract
  74. Kai Wang, General identities for Horadam sequences revised III, (2020). doi:10.13140/RG.2.2.36662.11849 (A000032, A000045, A000129, A001045, A002203, A014551, A015518, A022088, A046717, A102345)
  75. Kai Wang, General identities for Horadam sequences revised III, (2020). PDF
  76. Kai Wang, Identities, generating functions and Binet formula for generalized k-nacci sequences, 2020. doi:10.13140/RG.2.2.19649.79209 (A000078, A073817, A073937, A074193, A100329)
  77. Kai Wang, Identities for generalized enneanacci numbers, Generalized Fibonacci Sequences (2020). PDF (A000051, A000073, A000078, A001591, A001592, A001644, A073145, A073817, A073937, A074048, A074062, A074584, A079262, A104144, A122189, A122265, A163551, A168082, A207539)
  78. Kai Wang, Girard-Waring Type Formula For A Generalized Fibonacci Sequence, Fibonacci Quarterly (2020) Vol. 58, No. 5, 229-235. PDF (A000392, A001550)
  79. Kai Wang, Power sum matrix and discriminant, Generalized Fibonacci Sequences (2020). pdf (A000032, A001591, A001644, A073817, A074048, A074584, A104621, A105754, A105755, A106273)
  80. Kai Wang, Girard-Waring type formula for a generalized Fibonacci sequence revisit, Generalized Fibonacci Sequences (2020). doi:10.13140/RG.2.2.17401.29282
  81. Kai Wang, Arctangent series for Horadam sequences, Generalized Fibonacci Sequences (2021). Abstract (A000129, A001519)
  82. Li-Yuan Wang, Zhi-Wei Sun, On practical numbers of some special forms, arXiv:1809.01532 [math.NT], 2018. (A294112)
  83. Qi Wang, τ-tilting finite simply connected algebras, arXiv:1910.01937 [math.RT], 2019. (A000245, A005807, A280891)
  84. Quiang Wang, On generalized Lucas sequences, Cont. Math. 531 (2010) 127-141
  85. Victor Y. Wang, On Hilbert 2-class fields and 2-towers of imaginary quadratic number fields, arXiv preprint arXiv:1508.06552, 2015
  86. Weiping Wang, Unified approaches to the approximations of the gamma function, Journal of Number Theory, Volume 163, June 2016, Pages 570–595
  87. Wang, Weiping; Wang, Tianming, Matrices related to the Bell polynomials. Linear Algebra Appl. 422 (2007), no. 1, 139-154.
  88. Wang, Weiping; Wang, Tianming Matrices related to the idempotent numbers and the numbers of planted forests. Ars Combin. 98 (2011), 83-96.
  89. Weiping Wang, Chenlu Zhang, Riordan arrays and related polynomial sequences, Linear Algebra and its Applications (2019) Vol. 580, 262-291. doi:10.1016/j.laa.2019.06.008
  90. Wenxi Wang, Improving formal reasoning for software systems using machine learning and symbolic approaches, Ph. D. Dissertation, Univ. Texas, Austin, 2024. doi:https://doi.org/10.26153/tsw/55770
  91. Wenxi Wang, Muhammad Usman, Alyas Almaawi, Kaiyuan Wang, Kuldeep S. Meel, Sarfraz Khurshid, A Study of Symmetry Breaking Predicates and Model Counting, National University of Singapore (2020). PDF (A000108, A000170, A047659)
  92. Xiaoyuan Wang, Wenchang Chu, Further Ramanujan-like series containing harmonic numbers and squared binomial coefficients, The Ramanujan Journal (2019) 1-28. doi:10.1007/s11139-019-00140-5
  93. Yi Wang and Arthur L.B. Yang, Total positivity of Narayana matrices, arXiv:1702.07822 [math.CO], 2017. (A281260)
  94. Yi Wang and Bao-Xuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, arXiv preprint arXiv:1303.5595, 2013.
  95. Ying Wang and Zihao Zhang, Hankel Determinants for a Class of Weighted Lattice Paths, arXiv:2409.18609 [math.CO], 2024. See p. 2. (A094967)
  96. Yu Wang, Jinyang Zhang, and Huyile Liang, Some properties of combinatorial triangles related to Horadam polynomials, Linear and Multilinear Algebra, 2024. doi:10.1080/03081087.2024.2303732
  97. Zhilan Wang, Tautological Integrals on Hilbert Schemes of Points on Curves, arXiv preprint arXiv:1506.08405, 2015
  98. Zhi Lan Wang, Tautological Integrals on Symmetric Products of Curves, Acta Mathematica Sinica, English Series, Aug., 2016, Vol. 32, No. 8, pp. 901–910 doi:10.1007/s10114-016-5565-5
  99. Zhilan Wang and Jian Zhou, Generating series of intersection numbers on Hilbert schemes of points, Frontiers of Mathematics in China, Vol. 12, Issue 5, pp. 1247-1264. doi:10.1007/s11464-017-0686-5
  100. Zilong Wang and Guang Gong, New Sequences Design from Weil Representation with Low Two-Dimensional Correlation in Both Time and Phase Shifts (2008) arXiv:0812.4487
  101. Zuoqin Wang, The twisted Mellin transform (2007), arXiv:0706.2642.
  102. Wanless, Ian M., Permanents of matrices of signed ones. Linear Multilinear Algebra 53 (2005), no. 6, 427-433.
  103. I. M. Wanless, A computer enumeration of small latin trades, Australas. J. Combin. 39, (2007) 247-258.
  104. Stefan de Wannemacker, Thomas Laffey and Robert Osburn, On a conjecture of Wilf (2006), arXiv:math/0608085.
  105. Mike Warburton, Ulam-Warburton Automaton-Counting Cells with Quadratics, arXiv:1901.10565 [math.CO], 2019. (A130665)
  106. Harold N. Ward, A Normal Graph Algebra, arXiv:2201.00389 [math.CO], 2022. (A008642, A033638)
  107. David S. Warren, Peter Van Roy, and Yanhong A. Liu, Proceedings of the 2nd Workshop on Logic and Practice of Programming (LPOP), arXiv:2211.09923 [cs.PL], 2022.
  108. Johan Wästlund, The bishop and knight checkmate on a large chessboard, arXiv:2405.04421 [math.CO], 2024. See p. 13. (A225556)
  109. Koshi Watanabe, Keisuke Maeda, Takahiro Ogawa, and Miki Haseyama, Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation, arXiv:2410.16698 [cs.LG], 2024.
  110. D. Watel, M.-A. Weisser, C. Bentz, D. Barth, An FPT algorithm in polynomial space for the directed Steiner tree problem with limited number of diffusing nodes, Information Processing Letters 115 (2015) 275-279.
  111. Wayne State University, College of Engineering, "COE YouTube channel reaches 2,000-view milestone", http://engineering.wayne.edu/news.php?id=7547
  112. Daniel Waxman, Kurt Butler, and Petar M. Djuric, Dagma-DCE: Interpretable, Non-Parametric Differentiable Causal Discovery, arXiv:2401.02930 [cs.LG], 2024. (A003024)
  113. Kaylee Weatherspoon, Structure of Extremal Unit Distance Graphs, Senior Thesis, Honors College, Univ. S. Carolina - Columbia (2023). See p. 28. PDF (A218537)
  114. Jordan E. Weaver, Pattern Avoidance Criteria for Smoothness of Positroid Varieties Via Decorated Permutations, Spirographs, and Johnson Graphs, Ph. D. Dissertation, Univ. of Washington (2022). PDF (A000079, A003422, A007317, A005802, A022558, A051295, A061552, A075834, A349413, A349456, A349457, A349458, A353131, A353132, A334154, A334155, A334156)
  115. R. Webster and G. Williams, On the trail of Reverse Divisors: 1089 and all that follow, Mathematical Spectrum, 45 (2012/2013), 96-102.
  116. Jianxin Wei, Lucas-Run Graphs, Bull. Malaysian Math. Sci. (2024) Vol. 47, Art. No. 178. doi:10.1007/s40840-024-01776-3
  117. Jianxin Wei and Yujun Yang, Associated Mersenne graphs, arXiv:2407.08237 [math.CO], 2024. See p. 4. (A001350)
  118. Q. Wei, R. Onofrio, doi:10.1016/j.physleta.2010.03.035, Edge effects in electrostatic calibrations for the measurement of the Casimir force, Phys. Lett. A 374 (2010) 2230-2234.
  119. Yunlan Wei, Yanpeng Zheng, Zhaolin Jiang, Sugoog Shon, A Study of Determinants and Inverses for Periodic Tridiagonal Toeplitz Matrices with Perturbed Corners Involving Mersenne Numbers, Mathematics (2019) Vol. 7, No. 10, 893. doi:10.3390/math7100893 (A000668)
  120. C. Weibel, Algebraic K-Theory of Rings of Integers in Local and Global Fields (2005). In: Friedlander E., Grayson D. (eds) Handbook of K-Theory. Springer, Berlin, Heidelberg, doi:10.1007/978-3-540-27855-9_5
  121. A. Weingartner, On the Solutions of sigma(n) = sigma(n+k), Journal of Integer Sequences, Vol. 14 (2011), #11.5.5.
  122. Andreas Weingartner, <a href="https://arxiv.org/abs/2101.11585">The number of prime factors of integers with dense divisors</a>, arXiv:2101.11585 [math.NT], 2021.
  123. Andreas Weingartner, Uniform distribution of αn modulo one for a family of integer sequences, arXiv:2303.16819 [math.NT], 2023. (A005117, A005153, A037143, A047836, A174973, A359420)
  124. F. V. Weinstein, Notes on Fibonacci partitions, Experimental Mathematics 25:4 (2016), pp. 482-499. arXiv:math/0307150.
  125. Jens Weise, Evolutionary Many-Objective Optimisation for Pathfinding Problems, Ph. D. Dissertation, Otto von Guercke Univ. Magdeburg (Germany, 2022), see p. 53. PDF (A000984, A001850, A007764, A140518)
  126. Simon Weisgerber, Value Judgments in Mathematics: GH Hardy and the (Non-)seriousness of Mathematical Theorems, Global Phil. (2024) Vol. 34, Art. No. 1. doi:10.1007/s10516-023-09705-y (A001232 p. 8)
  127. Michael Weiss, On the Distribution of Rational Squares, arXiv preprint arXiv:1510.07362, 2015
  128. Michael Weiss, Where Are the Rational Squares?, The American Mathematical Monthly, Vol. 124, No. 3 (March 2017), pp. 255-259. doi:10.4169/amer.math.monthly.124.3.255
  129. E. W. Weisstein, CRC Concise Encyclopedia of Mathematics. Boca Raton, FL: CRC Press, 1998. ISBN 0849396409.
  130. E. W. Weisstein's World of Mathematics.
  131. T. Weist, On the Euler characteristic of Kronecker moduli spaces, Arxiv preprint arXiv:1203.2740, 2012 and J. Alg. Comb. 38 (3) (2013) 567 doi:10.1007/s10801-012-0415-8
  132. Pascal Welke, Tamás Horváth, Stefan Wrobel, Probabilistic and exact frequent subtree mining in graphs beyond forests, Machine Learning (2019), 1–28. doi:10.1007/s10994-019-05779-1 (A000055)
  133. Wellin, Paul (2015). Essentials of programmin in Mathematica. doi:10.1017/CBO9781316337738. 
  134. David Wells, Prime Numbers: The Most Mysterious Figures in Math, Wiley, 2005.
  135. Yang Wen, On the Log-Concavity of the Root of the Catalan-Larcombe-French Numbers, American Journal of Mathematical and Computer Modelling, 2017; 2(4): 95-98, http://www.sciencepublishinggroup.com/j/ajmcm, doi:10.11648/j.ajmcm.20170204.11; https://pdfs.semanticscholar.org/76a9/616f193a329add50dbf4481e25b797edce8b.pdf
  136. Matthias Wendt, Oriented Schubert calculus in Chow-Witt rings of Grassmannians, arXiv:1808.07296 [math.AG], 2018.
  137. Z. Weng, P. M. Djuric, Efficient learning by consensus over regular networks, in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, 4-9 May 2014, Pages: 7253 - 7257 INSPEC Accession Number: 14448553 doi:10.1109/ICASSP.2014.6855008
  138. Sylvia Wenmackers, On the Limits of Comparing Subset Sizes within N, J. Phil. Math. (2024) Vol. 1, 223-251. See p. 229. doi:10.36253/jpm-2939 (A325912)
  139. Wentink, Allan. Symmetry with Independent Blocks, 3 pages. Can be found on the late Ralph E. Griswold webpage of sample-chapters of an unfinished book about weaving, http://www.cs.arizona.edu/patterns/weaving/webdocs.html.
  140. M. Werner, An Algorithmic Approach for the Zarankiewicz Problem, http://tubafun.bplaced.net/public/zarankiewicz_paper_presentation.pdf, 2012.
  141. Christoph Wernhard, Structure-Generating First-Order Theorem Proving, Univ. Potsdam (Germany 2023). PDF (A000108, A001147, A001699, A254789)
  142. Christoph Wernhard and Wolfgang Bibel, Learning from Łukasiewicz and Meredith: Investigations into Proof Structures (Extended Version), arXiv:2104.13645 [cs.AI], 2021. (A000108, A011782, A254789)
  143. Andrew West, Bound Optimization for Parallel Quadratic Sieving Using Large Prime Variations (A126726)
  144. Julian West, Sorting twice through a stack, Theoretical Computer Science, Volume 117, Issues 1-2, 30 August 1993, Pages 303-313.
  145. J. West, Permutation trees and the Catalan and Schroeder numbers, Discrete Math., 146: 247-262 (1995).
  146. Bruce W. Westbury, Invariant tensors for the spin representation of so(7) (2006), arXiv:math/0601209.
  147. B. W. Westbury, Enumeration of non-positive planar trivalent graphs, J. Alg. Comb. 25 (2007) 357 doi:10.1007/s10801-006-0041-4
  148. Bruce W. Westbury, Invariant tensors and the cyclic seiving phenomenon, El. J. Combinat. 23 (4) (2016) P4.25 doi:10.37236/4569
  149. Wetherell, Chris. Colour by numbers. Australian Mathematics Teacher, Vol. 73, No. 3, 2017: 38-40. <https://search.informit.com.au/documentSummary;dn=123641155304878;res=IELHSS> ISSN: 0045-0685.
  150. Manuel Wettstein, Trapezoidal Diagrams, Upward Triangulations, and Prime Catalan Numbers, arXiv:1602.07235, 2016. ["None of the presented results would have been obtained without the help of the online encyclopedia of integer sequences which gave the crucial hint by recognizing the 3-dimensional Catalan numbers"]
  151. D. White, M. Anderson, Using a Superfactorial Problem to Provide Extended Problem-Solving Experiences, PRIMUS (2020). doi:10.1080/10511970.2020.1809039
  152. Tad White, Counting free Abelian actions, arXiv:1304.2830
  153. Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. (A001006, A001263, A001700, A009766, A055151, A068763, A069269, A108759, A108767, A127157, A145596, A173020, A212206, A214457, A278881)
  154. Earl Glen Whitehead Jr., Stirling number identities from chromatic polynomials, Journal of Combinatorial Theory, Series A, Volume 24, Issue 3, May 1978, Pages 314-317.
  155. James Christopher Whitehead, The Production of Pairs of Isolated Photons at Higher Orders in QCD, Ph. D. Thesis, Durham University (UK, 2021). Abstract (A268163)
  156. Ward. O. Whitt, Weirdness in CTMC's, Notes for Course IEOR 6711: Stochastic Models I, http://www.columbia.edu/~ww2040/6711F12/lect1129.pdf, 2012.
  157. M. Whittaker, Topological spaces associated to higher-rank graphs, 2013; http://www.michaelwhittaker.ca/TopologicalRealisations_AustMS2013.pdf
  158. Robin W. Whitty, Rook polynomials on two-dimensional surfaces and graceful labellings of graphs, Discrete Mathematics, Volume 308, Issues 5-6, 28 March 2008, Pages 674-683.
  159. Ridlo W. Wibowo, Introducing Fermat Sequences, J. Phys.: Conf. Ser. 1245 (2019), 012048. doi:10.1088/1742-6596/1245/1/012048 (A078753)
  160. W. Wieczorek, A Nowakowski, Grammatical Inference in the Discovery of Generating Functions, in Man–Machine Interactions 4, 2016, 4th International Conference on Man–Machine Interactions, ICMMI 2015 Kocierz Pass, Poland, October 6–9, Pages pp 627-637, Springer 2015; doi:10.1007/978-3-319-23437-3_54
  161. Thomas Wieder, The number of certain k-combinations of a n-set, Applied Mathematics Electronic Notes, vol. 7 (2007), 45-52.
  162. Thomas Wieder, The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets, Appl. Math. Sci., vol. 3(55) (2009), 2707-2724.
  163. Thomas Wieder, doi:10.3968/j.pam.1925252820110201.010 Generation of All Possible Multiselections from a Multiset, Progress in Applied Mathematics, 2(1) (2011), 61-66.
  164. Thomas Wieder, The Debye scattering formula in n dimensions, Journal of Mathematical and Computational Science, vol. 2 no. 4 (2012), 1086-1090.
  165. Thomas Wiehe, Counting, grafting and evolving binary trees, arXiv:2010.06409 [q-bio.PE], 2020. (A000108, A000111, A000142, A000169, A001147, A001190, A006472)
  166. Michael J. Wiener, The Largest Integer Not the Sum of Distinct 8th Powers, J. Int. Seq. (2023) Vol. 26, Art. 23.5.4. Abstract (A001661, A010060)
  167. Marcel Wienöbst, Max Bannach, and Maciej Liśkiewicz, Polynomial-Time Algorithms for Counting and Sampling Markov Equivalent DAGs with Applications, arXiv:2205.02654 [cs.LG], 2022. (A003319)
  168. Tom Wiesing, Michael Kohlhase, Florian Rabe, Virtual Theories – A Uniform Interface to Mathematical Knowledge Bases, Mathematical Aspects of Computer and Information Sciences (MACIS) 2017. Lecture Notes in Computer Science, Vol. 10693. doi:10.1007/978-3-319-72453-9_17
  169. WikiMili, Eight queens puzzle, (2019). html (A000170, A002562)
  170. Wikipedia, Dynamic Programming
  171. Wild, Marcel Counting or producing all fixed cardinality transversals. Algorithmica 69 (2014), no. 1, 117-129.
  172. Wildforests, "Cicada", http://wiki.wildforests.co/topic/Cicada, See Footnote 15; visited Dec. 2012.
  173. D. Jacob Wildstrom, doi:10.1016/j.laa.2010.03.028 Dynamic resource location with tropical algebra, Lin. Alg. Applic. (2011) (in press)
  174. D. J. Wildstrom, Structural Qualities and Serial Construction of Tournament Braids, in Bridges 2012: Mathematics, Music, Art, Architecture, Culture; http://bridgesmathart.org/2012/cdrom/proceedings/98/paper_98.pdf
  175. D. J. Wildstrom, Design and serial construction of digraph braids, Journal of Mathematics and the Arts, Volume 9, Issue 1-2, 2015.
  176. Michael J. Wilensky, Fraser Kennedy, Philip Bull, Joshua S. Dillon, and the HERA Collaboration, Bayesian jackknife tests with a small number of subsets: Application to HERA 21cm power spectrum upper limits, arXiv:2210.17351 [astro-ph.IM], 2022. (A000110)
  177. Herbert S. Wilf, The Redheffer matrix of a partially ordered set, The Electronic Journal of Combinatorics, Volume 11(2), 2004, R#10.
  178. Herbert S. Wilf, Mathematics: An Experimental Science, 2005, Draft of a chapter for the forthcoming volume "The Princeton Companion to Mathematics," edited by Tim Gowers.
  179. Robert J. Wilkin, Neverlution: Dismantling the Theory of Evolution One Amino Acid at a Time, WestBow Press, Bloomington, IN, 2017. (A000142)
  180. Aaron Williams, Pattern Avoidance for k-Catalan Sequences, Proc. 21st Int'l Conf. Permutation Patterns (2023). PDF (A001764)
  181. Hugh Williams, R. K. Guy, doi:10.1142/S1793042111004587 Some fourth-order linear divisibility sequences, Intl. J. Number Theory vol. 7 (5) (2011) 1255-1277
  182. H. C. Williams and R. K. Guy, Odd and even linear divisibility sequences of order 4, INTEGERS, 2015, #A33.
  183. N. Williams, On Eliminating Square Paths in a Square Lattice, Master's Thesis, Rice University, 2000.
  184. Ryan Williams, Applying Practice to Theory (2008) arXiv:0811.1305
  185. Andreas Willig, Autonomous allocation of wireless body-sensor networks to frequency channels: modeling with repeated "balls-in-bins" experiments, Wireless Networks (2018), 1-18. doi:10.1007/s11276-018-1777-1
  186. Andrew T. Wilson, Torus link homology and the nabla operator, arXiv preprint arXiv:1606.00764, 2016
  187. David W. Wilson, "The Fifth Taxicab Number is 48988659276962496", J. Integer Sequences, Volume 2, 1999, Article 99.1.9.
  188. Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes, http://www.cs.auckland.ac.nz/~mcw/Research/Outputs/Wils2013.pdf.
  189. John D. Wiltshire-Gordon, Alexander Woo, Magdalena Zajaczkowska. Specht Polytopes and Specht Matroids. arXiv:1701.05277 [math.CO], 2017. ["We make the following conjecture with the help of the OEIS" (Conjecture 6.2)]
  190. David Kofoed Wind, CONNECTED GRAPHS WITH FEWEST SPANNING TREES, BACHELOR THESIS, SPRING 2011, http://www.student.dtu.dk/~s082951/publications/thesis.pdf
  191. Donald A. Windsor, Canonical model for taxonomy based on partition of integers, SciAesthetics Essays (2020), 1-19. doi:10.13140/RG.2.2.30563.99362 (A000041)
  192. R. Winkel, An exponential formula for polynomial vector fields II. Lie series, exponential substitution and rooted trees. Adv. Math. 147 (1999), no. 2, 260-303.
  193. M. Winkler, On a stopping time algorithm of the 3n+ 1 function, http://mike-winkler.net/collatz_algorithm.pdf.
  194. Mike Winkler, On the structure and the behaviour of Collatz 3n+ 1 sequences, 2014; http://mikewinkler.co.nf/collatz_structure_2014.pdf; arXiv preprint arXiv:1412.0519, 2014
  195. M. Winkler, New results on the stopping time behaviour of the Collatz 3x+ 1 function, arXiv preprint arXiv:1504.00212, 2015
  196. Mike Winkler, The algorithmic structure of the finite stopping time behavior of the 3x+ 1 function, arXiv:1709.03385 [math.GM], 2017
  197. Mike Winkler, The Recursive Stopping Time Structure of the 3x+ 1 Function, 2018. PDF (A020914, A020915, A022921, A056576, A076227, A100982, A177789, A293308)
  198. Mike Winkler, An Approach to a Simple Proof of Fermat's Last Theorem. 2018. PDF (A219539)
  199. Joost Winter, QStream: A Suite of Streams, 2013; http://homepages.cwi.nl/~winter/articles/calcotools13.pdf
  200. J. Winter, M. M. Bonsangue and J. J. M. M. Rutten, Context-free coalgebras, 2013; PDF
  201. Yoad Winter and Remko Scha, Plurals, draft chapter for the Wiley-Blackwell Handbook of Contemporary Semantics - second edition, edited by Shalom Lappin and Chris Fox, 2014; http://www.phil.uu.nl/~yoad/papers/WinterSchaPlurals.pdf
  202. Johannes Wirtz, On the enumeration of leaf-labelled increasing trees with arbitrary node-degree, arXiv:2211.03632 [q-bio.PE], 2022. (A006472, A256006, A358072)
  203. Gus Wiseman, Every Clutter Is a Tree of Blobs, The Mathematica Journal, Vol. 19, 2017; http://www.mathematica-journal.com/2017/12/every-clutter-is-a-tree-of-blobs/
  204. H. M. Wiseman and J. Eisert, Nontrivial quantum effects in biology: A skeptical physicists' view (2007), arXiv:0705.1232.
  205. H. A. Witek, G. Moś, C.-P. Choua, Zhang-Zhang Polynomials of Regular 3-and 4-tier Benzenoid Strips, MATCH Commun. Math. Comput. Chem. 73 (2015) 427-442.
  206. Shawn L. Witte, Link Nomenclature, Random Grid Diagrams, and Markov Chain Methods in Knot Theory, Ph. D. Dissertation, University of California-Davis (2020). PDF (A008306, A010790, A082491)
  207. Roland Wittler, General encoding of canonical k-mers, Peer Community J. (2023) Vol. 3, Art. e87. doi:10.24072/pcjournal.323 (A000217)
  208. R. Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2pi/7, JIS 12 (2009) 09.8.5
  209. R. Witula, Full Description of Ramanujan Cubic Polynomials, J. Int. Seq. 13 (2010) 10.5.7
  210. R. Witula, Ramanujan type trigonometric formulae, DEMONSTRATIO MATHEMATICA, Vol. XLV, No. 4, 2012, pp. 789-796; http://www.mini.pw.edu.pl/~demmath/archive/dm45_4/galleys/3.pdf
  211. R. Witula, P. Lorenc, M. Rozanski, M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, 2014; http://mat.polsl.pl/zn/zeszyty/z4/znps_mat_stos_04_2014_str_017-034.pdf
  212. Roman Wituła and Damian Sota, "Quasi-Fibonacci Numbers of Order 11", J. Integer Sequences, Volume 10, 2007, Article 07.8.5.
  213. Roman Wituła and Damian Sota, "New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7", J. Integer Sequences, Volume 10, 2007, Article 07.5.6.
  214. Roman Wituła, Damian Sota and Adam Warzyski, "Quasi-Fibonacci Numbers of the Seventh Order", J. Integer Sequences, Volume 9, 2006, Article 06.4.3.
  215. Witzel, Stefan doi:10.1007/s10711-017-0247-8 On panel-regular ~A2 lattices. Geom. Dedicata 191, 85-135 (2017).
  216. I. Wloch, U. Bednarz, D. Bród, A Wloch and M. Wolowiec-Musial, On a new type of distance Fibonacci numbers, Discrete Applied Math., Volume 161, Issues 16-17, November 2013, Pages 2695-2701.
  217. Iwona Włoch, Natalia Paja, and Anetta Szynal-Liana, On Some Combinatorial Properties of Oresme Hybrationals, Symmetry (2023) Vol. 15, Iss. 11, 1996. doi:10.3390/sym15111996
  218. Wen-Jin Woan, "Hankel Matrices and Lattice Paths", J. Integer Sequences, Volume 4, 2001, Article 01.1.2.
  219. Wen-Jin Woan, Diagonal lattice paths. Congr. Numerantium 151 (2001) 173-178
  220. Wen-jin Woan, "A Recursive Relation for Weighted Motzkin Sequences", J. Integer Sequences, Volume 8, 2005, Article 05.1.6.
  221. Wen-jin Woan, "Animals And 2-Motzkin Paths", J. Integer Sequences, Volume 8, 2005, Article 05.5.6.
  222. Wen-jin Woan, "A Relation Between Restricted and Unrestricted Weighted Motzkin Paths", J. Integer Sequences, Volume 9, 2006, Article 06.1.7.
  223. Wen-jin Woan and Barbara Tankersley, "Exponential Generating Functions for Trees with Weighted Edges and Labeled Nodes", J. Integer Sequences, Volume 10, 2007, Article 07.8.4.
  224. J. Wodlinger, COSTAS ARRAYS, GOLOMB RULERS AND WAVELENGTH ISOLATION SEQUENCE PAIRS, M.S. Dissertation, Math. Dept., Simon Fraser University, Spring 2012; http://people.math.sfu.ca/~jed/Papers/Jane%20Wodlinger.%20Master's%20Thesis.%202012.pdf.
  225. G. J. Woeginger, Nothing new about equiangular polygons, Amer. Math. Monthly, 120 (2013), 849-850.
  226. Gregory Gerard Wojnar, Daniel Sz. Wojnar, Leon Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, arXiv:1706.08381 [math.GM], 2017.
  227. Wójtowicz, Marek, Robin's inequality and the Riemann hypothesis. Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 4, 47-49.
  228. Marc Wolf, François Wolf, Representation theorem of composite odd numbers indices, SCIREA Journal of Mathematics (2018) 3.3, 106-117. HTML also PDF (A153238)
  229. Marek Wolf, Numerical determination of a certain mathematical constant related to the Möbius function, Card. Stefan Wyszynski Univ. (Warsaw, Poland, 2023) Vol. 29, No. 1-2, 17-20. doi:10.12921/cmst.2023.0000008
  230. WolframAlpha, Timeline of Systematic Data and the Development of Computable Knowledge (see 1973).
  231. Jesse Wolfson, Tschirnhaus transformations after Hilbert, arXiv:2001.06515 [math.AG], 2020. (A000905)
  232. Christian Woll, There is a 3X3 Magic Square of Squares on the Moon - A Lot of Them, Actually, arXiv:1811.04923 [math.HO], 2018. Also Mathematical Intelligencer (2019), 1-4. doi:10.1007/s00283-018-09866-4 (A087019)
  233. Zack Wolske, Number Fields with Large Minimal Index, Ph.D. Thesis, University of Toronto, 2018. PDF (A065474)
  234. Elisabeth Wong, Brittany Baur, Saad Quader and Chun-Hsi Huang, Biological network motif detection: principles and practice, Briefings in Bioinformatics, 2011, doi:10.1093/bib/bbr033.
  235. Siman Wong, Specialization of Galois groups and integral points on elliptic curves, Proceedings of the American Mathematical Society, 145 (2017), 5179-5190. doi:10.1090/proc/13677
  236. Patcharee Wongsason and Sawian Jaidee, Solvability of certain exponential Lebesgue-Nagell equations x² + pm = yn, Songklanakarin J. Sci. Technol., Prince of Songkla Univ. (Thailand, 2023) Vol. 45, No. 2, 301-307. Abstract (A000045, A002145)
  237. Sung Sik Woo, Cubic formula and cubic curves, Commun. Korean Math. Soc. 28 (2013), No. 2, pp. 209-224; doi:10.4134/CKMS.2013.28.2.209; PDF
  238. Anthony James Wood, Nonequilibrium steady states from a random-walk perspective, Ph. D. Thesis, The University of Edinburgh (Scotland, UK 2019). PDF (A001263, A008292, A196148)
  239. Anthony J. Wood, Richard A. Blythe, Martin R. Evans, Renyi entropy of the totally asymmetric exclusion process, arXiv:1708.00303 [cond-mat.stat-mech], 2017.
  240. Anthony J. Wood, Richard A. Blythe, Martin R. Evans, Combinatorial mappings of exclusion processes, arXiv:1908.00942 [cond-mat.stat-mech], 2019. (A001263, A008292, A111910 A196148)
  241. Roger Woodford, "Bounds for the Eventual Positivity of Difference Functions of Partitions into Prime Powers", J. Integer Sequences, Volume 10, 2007, Article 07.1.3.
  242. David Adam Woods, Strings for Temporal Annotation and Semantic Representation of Events, Ph. D. Dissertation, Univ. of Dublin, Trinity College (Ireland, 2022). PDF (A055203)
  243. John Wright, A recursive solution for Turing's H-M factor, Cryptologia, 40 (2016), issue 4, pp. 327-347; doi:10.1080/01611194.2015.1062318
  244. Brian Wu and Chai Wah Wu, arXiv:2309.00011 Big Two and n-card poker probabilities, arXiv:2309.00011 [math.HO], 2023. (A143314)
  245. Chai Wah Wu, Pigeonholes and repunits, Amer. Math. Monthly, 121 (2014), 529-533.
  246. Chai Wah Wu, Graphs whose normalized Laplacian matrices are separable as density matrices in quantum mechanics, arXiv preprint arXiv:1407.5663, 2014
  247. Chai Wah Wu, Meertens Number and Its Variations, IBM Research Report RC25531 (WAT1504-032) April 2015 (A246532)
  248. Chai Wah Wu, On a conjecture regarding primality of numbers constructed from prepending and appending identical digits, arXiv preprint arXiv:1503.08883, 2015
  249. Chai Wah Wu, Counting the number of isosceles triangles in rectangular regular grids, arXiv:1605.00180, 2016.
  250. Chai Wah Wu, Minimal number of points on a grid forming patterns of blocks, arXiv:1608.07247 [math.CO], 2016
  251. Chai Wah Wu, Sums of products of binomial coefficients mod 2 and run length transforms of sequences, arXiv preprint arXiv:1610.06166, 2016
  252. Chai Wah Wu, Can machine learning identify interesting mathematics? An exploration using empirically observed laws. arXiv:1805.07431 [cs.LG], 2018. (A000038, A000668, A005408, A055165, A034388)
  253. Chai Wah Wu, Record values in appending and prepending bitstrings to runs of binary digits, arXiv:1810.02293 [math.NT], 2018. (A003714, A003796, A086638, A156064, A175046, A318921, A319422, A319423, A319424)
  254. Chai Wah Wu, On rearrangement inequalities for multiple sequences, arXiv:2002.10514 [math.CO], 2020. (A072368, A260355, A331889, A331988, A333420, A333445, A333446)
  255. Chai Wah Wu, Pandigital and penholodigital numbers, arXiv:2403.20304 [math.GM], 2024. (A023811, A049363, A050278, A050289, A051846, A062813, A171102, A185122, A258103, A370950, A371194)
  256. Chai Wah Wu, Algorithms for complementary sequences, arXiv:2409.05844 [math.NT], 2024. (A000961, A001358, A001597, A001694, A002808, A005117, A006881, A007304, A007916, A013929, A014612, A014613, A014614, A024619, A025475, A029742, A036966, A036967, A046386, A046387, A052485, A052486, A057854, A067885, A069492, A069493, A090946, A100959, A138836, A138890, A139819, A185543, A246547, A246655, A281222, A325112, A374812)
  257. Chuixiong Wu, Jianan Wang, and Fen Zuo, From Maximum Cut to Maximum Independent Set, arXiv:2408.06758 [quant-ph], 2024. See p. 21. (A265032)
  258. D. Wu, K. Addanki, M. Saers, Freestyle: A Challenge-Response System for Hip Hop Lyrics via Unsupervised Induction of Stochastic Transduction Grammars, in INTERSPEECH 2013, 25-29 August 2013, Lyon, France, pp. 3478-3482; http://www.cse.ust.hk/~dekai/library/WU_Dekai/WuAddankiSaers_Interspeech2013.pdf
  259. Dekai Wu, K. Addanki and M. Saers, Modeling Hip Hop Challenge Response Lyrics as Machine Translation, in Sima'an, K., Forcada, M.L., Grasmick, D., Depraetere, H., Way, A. (eds.) Proceedings of the XIV Machine Translation Summit (Nice, September 2-6, 2013), p. 109-116; http://www.mtsummit2013.info/files/proceedings/main/mt-summit-2013-addanki-et-al.pdf
  260. G. Wu, M. G. Parker, A complementary construction using mutually unbiased bases, arXiv preprint arXiv:1309.0157, 2013 ["It should be noted that the theoretical developments were greatly helped by us first plugging our computational results into the On-Line Encyclopedia of Integer Sequences (OEIS)"]
  261. Hai-Liang Wu and Zhi-Wei Sun, Some universal quadratic sums over the integers, arXiv:1707.06223 [math.NT], 2017.
  262. Hai-Liang Wu, Zhi-Wei Sun, Arithmetic progressions represented by diagonal ternary quadratic forms, arXiv:1811.05855 [math.NT], 2018. (A286885)
  263. Jian-Zhang Wu and Gleb Beliakov, Generating fuzzy measures from additive measures, arXiv:2309.15399 [math.GM], 2023. (A046873)
  264. Jun Wu and Mathias Drton, Partial Homoscedasticity in Causal Discovery with Linear Models, arXiv:2308.08959 [math.ST], 2023. (A003024)
  265. Tony F. Wu, K. Ganesan, A. Hu, H.-S. P. Wong, S. Wong, S. Mitra, TPAD: Hardware Trojan Prevention and Detection for Trusted Integrated Circuits, arXiv preprint arXiv:1505.02211, 2015.
  266. Rex H. Wu, A Few Linear Combinations of Triangular Numbers that are the Difference of Two Squares, Math. Mag., 2024. doi:10.1080/0025570X.2024.2370068
  267. Meng-Han Wu, Henryk A. Witek, Rafał Podeszwa, Clar Covers and Zhang-Zhang Polynomials of Zigzag and Armchair Carbon Nanotubes, MATCH Commun. Math. Comput. Chem. (2025) Vol. 93, 415–462. [1] (A000073, A000129, A008288, A073717, A099463)
  268. Zhanggui Wu, Yen-Jen Cheng, Sen-Peng Eu, and Jyun-Cheng Yao, Sign balances and promotion order of Young-Fibonacci tableaux, Disc. Math. (2024) Vol. 346, Issue 2, 113751. doi:10.1016/j.disc.2023.113751
  269. E. Wulcan, Pattern avoidance in involutions (Masters thesis) (ps, pdf).
  270. Simon Wundling, About a combinatorial problem with n seats and n people, arXiv:2303.18175 [math.CO], 2023. (German) (A095912, A095236, A095240, A166079, A358056)
  271. J. Wuttke, Multiple Bragg reflection by a thick mosaic crystal, Acta Cryst. (2014). A70, 429-440 doi:10.1107/S205327331400802X
  272. B. G. Wybourne, Admissible partitions and the expansion of the square of the Vandermonde determinant in N variables, 2003.
  273. Nikolai Wyderka and Andreas Ketterer, Probing the geometry of correlation matrices with randomized measurements, arXiv:2211.09610 [quant-ph], 2022. (A035309)
  274. Ed Wynn, Exhaustive generation of Mrs Perkins's quilt square dissectiosn for low orders, arXiv:1308.5420, 2013.
  275. Ed Wynn, Enumeration of nonisomorphic Hamiltonian cycles on square grid graphs, arXiv preprint arXiv:1402.0545, 2014.
  276. Ed Wynn, A comparison of encodings for cardinality constraints in a SAT solver, arXiv:1810.12975 [cs.LO], 2018. (A152125, A227116, A240443, A319158, A319159)

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.