OFFSET
0,1
COMMENTS
A Berndt-type sequence for tan(2*Pi/7).
a(n) is always an integer.
a(n) is x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of the polynomial
x^3 + 9*x^2 - x - 1.
x1 = tan(Pi/7)/tan(2*Pi/7),
x2 = tan(2*Pi/7)/tan(4*Pi/7),
x3 = tan(4*Pi/7)/tan(Pi/7).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
Roman Witula and Damian Slota, Quasi-Fibonacci Numbers of Order 11, Journal of Integer Sequences, Vol. 10 (2007), Article 07.8.5
Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
Index entries for linear recurrences with constant coefficients, signature (-9,1,1).
FORMULA
a(n) = (tan(Pi/7)/tan(2*Pi/7))^n + (-tan(2*Pi/7)/tan(3*Pi/7))^n + (-tan(3*Pi/7)/tan(Pi/7))^n.
From Colin Barker, Jun 07 2016: (Start)
a(n) = -9*a(n-1)+a(n-2)+a(n-3) for n>2.
G.f.: (3+18*x-x^2) / (1+9*x-x^2-x^3).
(End)
PROG
(PARI) Vec((3+18*x-x^2)/(1+9*x-x^2-x^3) + O(x^30)) \\ Colin Barker, Jun 07 2016
(PARI) polsym(x^3 + 9*x^2 - x - 1, 30) \\ Charles R Greathouse IV, Jul 20 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Kai Wang, Jun 07 2016
EXTENSIONS
Edited by N. J. A. Sloane, Jun 07 2016
STATUS
approved