|
|
A011764
|
|
a(n) = 3^(2^n) (or: write in base 3, read in base 9).
|
|
22
|
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
a(n) is the second-highest value k such that A173419(k) = n+2. - Charles R Greathouse IV, Oct 03 2012
Let b(0) = 6; b(n+1) = smallest number such that b(n+1) + Product_{i=0..n} b(i) divides b(n+1)*Product_{i=0..n} b(i). Then b(n+1) = a(n) for n >= 0. - Derek Orr, Dec 13 2014
Changing "+" to "-": Let b(0) = 6; b(n+1) = smallest number such that b(n+1) - Product_{i=0..n} b(i) divides b(n+1)*Product_{i=0..n} b(i). Then b(n+2) = a(n) for n >= 0. - Derek Orr, Jan 04 2015
With offset = 1, a(n) is the number of collections C of subsets of {1,2,...,n} such that if S is in C then the complement of S is not in C. - Geoffrey Critzer, Feb 06 2017
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..11
|
|
FORMULA
|
a(0)=3 and a(n+1) = a(n)^2. - Benoit Jubin, Jun 27 2009
Sum_{n>=0} 1/a(n) = A078885. - Amiram Eldar, Nov 09 2020
Product_{n>=0} (1 + 1/a(n)) = 3/2. - Amiram Eldar, Jan 29 2021
|
|
MATHEMATICA
|
3^(2^Range[0, 10]) (* Harvey P. Dale, Oct 14 2012 *)
|
|
PROG
|
(MAGMA) [3^(2^n): n in [0..8]]; // Vincenzo Librandi, Sep 15 2011
(PARI) a(n)=3^2^n \\ Charles R Greathouse IV, Oct 03 2012
|
|
CROSSREFS
|
Cf. A001146, A078885, A176594.
Sequence in context: A216206 A038062 A218149 * A018624 A274032 A032078
Adjacent sequences: A011761 A011762 A011763 * A011765 A011766 A011767
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Stephan Y Solomon (ilans(AT)way.com)
|
|
STATUS
|
approved
|
|
|
|