login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A011764 a(n) = 3^(2^n) (or: write in base 3, read in base 9). 17
3, 9, 81, 6561, 43046721, 1853020188851841, 3433683820292512484657849089281, 11790184577738583171520872861412518665678211592275841109096961 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) is the second-highest value k such that A173419(k) = n+2. - Charles R Greathouse IV, Oct 03 2012

Let b(0) = 6; b(n+1) = smallest number such that b(n+1) + Product_{i=0..n} b(i) divides b(n+1)*Product_{i=0..n} b(i). Then b(n+1) = a(n) for n >= 0. - Derek Orr, Dec 13 2014

Changing "+" to "-": Let b(0) = 6; b(n+1) = smallest number such that b(n+1) - Product_{i=0..n} b(i) divides b(n+1)*Product_{i=0..n} b(i). Then b(n+2) = a(n) for n >= 0. - Derek Orr, Jan 04 2015

With offset = 1, a(n) is the number of collections C of subsets of {1,2,...,n} such that if S is in C then the complement of S is not in C.  - Geoffrey Critzer, Feb 06 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..11

FORMULA

a(0)=3 and a(n+1) = a(n)^2. - Benoit Jubin, Jun 27 2009

MATHEMATICA

3^(2^Range[0, 10]) (* Harvey P. Dale, Oct 14 2012 *)

PROG

(MAGMA) [3^(2^n): n in [0..8]]; // Vincenzo Librandi, Sep 15 2011

(PARI) a(n)=3^2^n \\ Charles R Greathouse IV, Oct 03 2012

CROSSREFS

Sequence in context: A216206 A038062 A218149 * A018624 A274032 A032078

Adjacent sequences:  A011761 A011762 A011763 * A011765 A011766 A011767

KEYWORD

nonn,easy

AUTHOR

Stephan Y Solomon (ilans(AT)way.com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 16:24 EDT 2017. Contains 287241 sequences.