This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105754 Lucas 8-step numbers. 13
 1, 3, 7, 15, 31, 63, 127, 255, 502, 1003, 2003, 3999, 7983, 15935, 31807, 63487, 126719, 252936, 504869, 1007735, 2011471, 4014959, 8013983, 15996159, 31928831, 63730943, 127208950, 253913031, 506818327, 1011625183, 2019235407 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS G. C. Greubel, Table of n, a(n) for n = 1..2500 (terms 1..200 from T. D. Noe) Martin Burtscher, Igor Szczyrba, RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5. C. A. Charalambides, Lucas numbers and polynomials of order k and the length of the longest circular success run, The Fibonacci Quarterly, 29 (1991), 290-297. Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4 Eric Weisstein's World of Mathematics, Lucas n-Step Number Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1,1). FORMULA a(n) = Sum_{k=1..8} a(n-k) for n > 0, a(0)=8, a(n)=-1 for n=-7..-1. G.f.: -x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7)/( -1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 ). - R. J. Mathar, Jun 20 2011 MATHEMATICA a={-1, -1, -1, -1, -1, -1, -1, 8}; Table[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s, {n, 50}] CoefficientList[Series[-x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8)/(-1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9), {x, 0, 50}], x] (* G. C. Greubel, Dec 18 2017 *) PROG (PARI) a(n)=([0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 1; 1, 1, 1, 1, 1, 1, 1, 1]^(n-1)*[1; 3; 7; 15; 31; 63; 127; 255])[1, 1] \\ Charles R Greathouse IV, Jun 14 2015 (PARI) x='x+O('x^30); Vec(-x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8)/(-1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9)) \\ G. C. Greubel, Dec 18 2017 CROSSREFS Cf. A000032, A001644, A073817, A074048, A074584, A104621, A105755 (Lucas n-step numbers). Sequence in context: A116082 A245269 A043747 * A116690 A267258 A305493 Adjacent sequences:  A105751 A105752 A105753 * A105755 A105756 A105757 KEYWORD nonn,easy AUTHOR T. D. Noe, Apr 22 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 08:53 EDT 2019. Contains 323441 sequences. (Running on oeis4.)