login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105752 Expansion of e.g.f. cos(i*log(1 + x)), i = sqrt(-1). 2
1, 0, 1, -3, 12, -60, 360, -2520, 20160, -181440, 1814400, -19958400, 239500800, -3113510400, 43589145600, -653837184000, 10461394944000, -177843714048000, 3201186852864000, -60822550204416000, 1216451004088320000, -25545471085854720000, 562000363888803840000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

If the signs are ignored, this is essentially the same as A001710, whose e.g.f. is cos(i*log(1 - x)) = cosh(log(1 - x)).

The sequence 0,1,1,3,12,60,... has e.g.f. -Im(sin(i*log(1 - x))) = -sinh(log(1 - x)); the sequence 0,1,-1,3,-12,60,... has e.g.f. Im(sin(i*log(1 + x))) = sinh(log(1 + x)).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

E.g.f.: cos(i*log(1 + x)), i = sqrt(-1).

E.g.f.: 1/2*(1 + x + 1/(1 + x)). - Sergei N. Gladkovskii, May 15 2013

Let Q(k,x) = 1 + (k+2)*x/(1 - x/(x + 1/Q(k+1,x))), then g.f.: 1 + (Q(0,sqrt(-x)) - 1)*x^2/(2*(sqrt(-x) - x)). - Sergei N. Gladkovskii, May 15 2013

G.f.: 1 + x^2/2*G(0), where G(k)= 1 + 1/(1 - x*(k+3)/(x*(k+3) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013

For n > 1, a(n) = (-1)^n * n! / 2. - Vaclav Kotesovec, Feb 25 2014

Conjecture: a(n) = Sum_{k=0..n} StirlingS1(n, 2*k). - Benedict W. J. Irwin, Oct 19 2016

E.g.f.: cosh(log(1 + x)). - Jianing Song, Apr 06 2019

MATHEMATICA

CoefficientList[Series[1/2*(1+x+1/(1+x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 25 2014 *)

PROG

(PARI) x='x+O('x^66); Vec(serlaplace(1/2*(1+x+1/(1+x)))) \\ Joerg Arndt, May 15 2013

CROSSREFS

Cf. A001710.

Sequence in context: A089057 A077134 A001710 * A177138 A053532 A159867

Adjacent sequences:  A105749 A105750 A105751 * A105753 A105754 A105755

KEYWORD

easy,sign

AUTHOR

Paul Barry, Apr 18 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 05:55 EST 2020. Contains 338699 sequences. (Running on oeis4.)