login
Lucas 8-step numbers.
14

%I #34 Nov 25 2020 21:39:42

%S 1,3,7,15,31,63,127,255,502,1003,2003,3999,7983,15935,31807,63487,

%T 126719,252936,504869,1007735,2011471,4014959,8013983,15996159,

%U 31928831,63730943,127208950,253913031,506818327,1011625183,2019235407

%N Lucas 8-step numbers.

%H G. C. Greubel, <a href="/A105754/b105754.txt">Table of n, a(n) for n = 1..2500</a> (terms 1..200 from T. D. Noe)

%H Martin Burtscher, Igor Szczyrba, RafaƂ Szczyrba, <a href="https://www.emis.de/journals/JIS/VOL18/Szczyrba/sz3.html">Analytic Representations of the n-anacci Constants and Generalizations Thereof</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.

%H C. A. Charalambides, <a href="http://www.fq.math.ca/Scanned/29-4/charalambides.pdf">Lucas numbers and polynomials of order k and the length of the longest circular success run</a>, The Fibonacci Quarterly, 29 (1991), 290-297.

%H Spiros D. Dafnis, Andreas N. Philippou, Ioannis E. Livieris, <a href="https://doi.org/10.3390/math8091487">An Alternating Sum of Fibonacci and Lucas Numbers of Order k</a>, Mathematics (2020) Vol. 9, 1487.

%H Tony D. Noe and Jonathan Vos Post, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Noe/noe5.html">Primes in Fibonacci n-step and Lucas n-step Sequences,</a> J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Lucasn-StepNumber.html">Lucas n-Step Number</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1,1,1,1,1,1).

%F a(n) = Sum_{k=1..8} a(n-k) for n > 0, a(0)=8, a(n)=-1 for n=-7..-1.

%F G.f.: -x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7)/( -1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 ). - _R. J. Mathar_, Jun 20 2011

%t a={-1, -1, -1, -1, -1, -1, -1, 8}; Table[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s, {n, 50}]

%t CoefficientList[Series[-x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8)/(-1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9), {x, 0, 50}], x] (* _G. C. Greubel_, Dec 18 2017 *)

%o (PARI) a(n)=([0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0; 0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,1; 1,1,1,1,1,1,1,1]^(n-1)*[1;3;7;15;31;63;127;255])[1,1] \\ _Charles R Greathouse IV_, Jun 14 2015

%o (PARI) x='x+O('x^30); Vec(-x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8)/(-1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9)) \\ _G. C. Greubel_, Dec 18 2017

%Y Cf. A000032, A001644, A073817, A074048, A074584, A104621, A105755 (Lucas n-step numbers).

%K nonn,easy

%O 1,2

%A _T. D. Noe_, Apr 22 2005