This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215560 a(n) = 3*a(n-1) + 46*a(n-2) + a(n-3) with a(0)=a(1)=3, a(2)=101. 7
 3, 3, 101, 444, 5981, 38468, 390974, 2948431, 26868565, 216624495, 1888775906, 15657923053, 134074085330, 1124375492334, 9556192325235, 80523923708399, 682280993578341, 5760499663646612, 48746948619251921, 411906111379078256, 3483838470286469746, 29447943482916260935 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The Ramanujan-type sequence number 6 for the argument 2Pi/7 (see also A214683, A215112, A006053, A006054, A215076, A215100, A120757 for the numbers: 1, 1a, 2, 2a, 3, 4 and 5 respectively). The sequence a(n) is one of the three special sequences (the remaining two are A215569 and A215572) connected with the following recurrence relation: T(n):=49^(1/3)*T(n-2)+T(n-3), with T(0)=3, T(1)=0, and T(2)=2*49^(1/3) - see the comments to A214683. It can be proved that T(n) = (c(1)^4/c(2))^(n/3) + (c(2)^4/c(4))^(n/3) + (c(4)^4/c(1))^(n/3), where c(j):=2*cos(2*Pi*j/7), and the following decomposition hold true: T(n) = at(n) + bt(n)*7^(1/3) + ct(n)*49^(1/3), where sequences at(n), bt(n), and ct(n) satisfy the following system of recurrence equations: at(n)=7*bt(n-2)+at(n-3), bt(n)=7*ct(n-2)+bt(n-3), ct(n)=at(n-2)+ct(n-3), with at(0)=3, at(1)=at(2)=bt(0)=bt(1)=bt(2)=ct(0)=ct(1)=0, ct(2)=2 - for details see the first Witula reference. It follows that a(n)=at(3*n), bt(3*n)=ct(3*n)=0. Every difference of the form a(n)-a(n-2)-a(n-3) is divisible by 3. Because the difference a(n+1)-a(n) is congruent to the difference a(n-4)-a(n-2) modulo 3 we easily deduce that a(6)-a(5) and a(7)-a(6)-2 are both divisible by 3. REFERENCES R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012 LINKS Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5. Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7. Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5. Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796. Index entries for linear recurrences with constant coefficients, signature (3,46,1). FORMULA a(n) = (c(1)^4/c(2))^n + (c(2)^4/c(4))^n + (c(4)^4/c(1))^n, where c(j) = 2*cos(2*Pi*j/7). G.f.: (3-6*x-46*x^2)/(1-3*x-46*x^2-x^3). MATHEMATICA LinearRecurrence[{3, 46, 1}, {3, 3, 101}, 50] PROG (PARI) Vec((3-6*x-46*x^2)/(1-3*x-46*x^2-x^3) + O(x^40)) \\ Michel Marcus, Apr 20 2016 CROSSREFS Cf. A214683, A215112, A006053, A006054, A215076, A215100, A120757, A214699. Sequence in context: A087542 A016456 A010266 * A325486 A206485 A009491 Adjacent sequences:  A215557 A215558 A215559 * A215561 A215562 A215563 KEYWORD nonn,easy AUTHOR Roman Witula, Aug 16 2012 EXTENSIONS More terms from Michel Marcus, Apr 20 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 19 11:09 EST 2019. Contains 329319 sequences. (Running on oeis4.)