login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215561 Number A(n,k) of permutations of k indistinguishable copies of 1..n with every partial sum <= the same partial sum averaged over all permutations; square array A(n,k), n>=0, k>=0, read by antidiagonals. 25
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 5, 30, 7, 1, 1, 1, 14, 420, 403, 35, 1, 1, 1, 42, 6930, 40350, 18720, 139, 1, 1, 1, 132, 126126, 5223915, 19369350, 746192, 1001, 1, 1, 1, 429, 2450448, 783353872, 27032968200, 9212531290, 71892912, 5701, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

"Late-growing permutations" were first defined by R. H. Hardin in A147681 and 18 related sequences.  David Scambler observed that the set of orthogonal sequences includes A000108 and A007004, and he asked for the other orthogonal sequences, see link below.

"Early-growing permutations" with every partial sum >= the same partial sum averaged over all permutations define the same sequences.

Conjecture: Row r > 1 is asymptotic to c(r) * r^(r*n) / (Pi^((r-1)/2) * n^((r+1)/2)), where c(r) are a constants. - Vaclav Kotesovec, Sep 07 2016

LINKS

Alois P. Heinz, Antidiagonals n = 0..14, flattened

David Scambler et al., A147681 Late-growing permutations and follow-up messages on the SeqFan list, Aug 10 2012

EXAMPLE

A(2,2) = 2: (1,1,2,2), (1,2,1,2).

A(2,3) = 5: (1,1,1,2,2,2), (1,1,2,1,2,2), (1,1,2,2,1,2), (1,2,1,1,2,2), (1,2,1,2,1,2).

A(3,1) = 3: (1,2,3), (1,3,2), (2,1,3).

a(4,1) = 7: (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,4,2,3), (2,1,3,4), (2,1,4,3), (2,3,1,4).

Square array A(n,k) begins:

  1,   1,     1,        1,           1,              1, ...

  1,   1,     1,        1,           1,              1, ...

  1,   1,     2,        5,          14,             42, ...

  1,   3,    30,      420,        6930,         126126, ...

  1,   7,   403,    40350,     5223915,      783353872, ...

  1,  35, 18720, 19369350, 27032968200, 44776592395920, ...

MAPLE

b:= proc(l) option remember; local m, n, g;

      m, n:= nops(l), add(i, i=l);

      g:= add(i*l[i], i=1..m)-(m+1)/2*(n-1);

     `if`(n<2, 1, add(`if`(l[i]>0 and i<=g,

        b(subsop(i=l[i]-1, l)), 0), i=1..m))

    end:

A:= (n, k)-> b([k$n]):

seq(seq(A(n, d-n), n=0..d), d=0..10);

MATHEMATICA

b[l_] := b[l] = Module[{m, n, g}, {m, n} = {Length[l], Total[l]}; g = Sum[i*l[[i]], {i, 1, m}] - (m+1)/2*(n-1); If[n < 2, 1, Sum[If[l[[i]] > 0 && i <= g, b[ReplacePart[l, i -> l[[i]] - 1]], 0], {i, 1, m}]]]; a[n_, k_] := b[Array[k&, n]]; Table [Table [a[n, d-n], {n, 0, d}], {d, 0, 9}] // Flatten (* Jean-Fran├žois Alcover, Dec 06 2013, translated from Maple *)

CROSSREFS

Columns k=0-19 give: A000012, A147681, A147682, A147684, A147686, A147687, A147692, A147694, A147695, A147697, A147698, A147700, A147705, A147707, A147712, A147713, A147714, A147715, A147717, A147769.

Rows n=0+1, 2-7 give: A000012, A000108, A007004, A215562, A215570, A215571, A215593.

Sequence in context: A106178 A305807 A205104 * A108714 A135508 A030413

Adjacent sequences:  A215558 A215559 A215560 * A215562 A215563 A215564

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Aug 16 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 05:58 EST 2019. Contains 320411 sequences. (Running on oeis4.)