OFFSET
0,13
COMMENTS
"Late-growing permutations" were first defined by R. H. Hardin in A147681 and 18 related sequences. David Scambler observed that the set of orthogonal sequences includes A000108 and A007004, and he asked for the other orthogonal sequences, see link below.
"Early-growing permutations" with every partial sum >= the same partial sum averaged over all permutations define the same sequences.
Conjecture: Row r > 1 is asymptotic to c(r) * r^(r*n) / (Pi^((r-1)/2) * n^((r+1)/2)), where c(r) are a constants. - Vaclav Kotesovec, Sep 07 2016
LINKS
Alois P. Heinz, Antidiagonals n = 0..14, flattened
David Scambler et al., A147681 Late-growing permutations and follow-up messages on the SeqFan list, Aug 10 2012
EXAMPLE
A(2,2) = 2: (1,1,2,2), (1,2,1,2).
A(2,3) = 5: (1,1,1,2,2,2), (1,1,2,1,2,2), (1,1,2,2,1,2), (1,2,1,1,2,2), (1,2,1,2,1,2).
A(3,1) = 3: (1,2,3), (1,3,2), (2,1,3).
a(4,1) = 7: (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,4,2,3), (2,1,3,4), (2,1,4,3), (2,3,1,4).
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 1, 2, 5, 14, 42, ...
1, 3, 30, 420, 6930, 126126, ...
1, 7, 403, 40350, 5223915, 783353872, ...
1, 35, 18720, 19369350, 27032968200, 44776592395920, ...
MAPLE
b:= proc(l) option remember; local m, n, g;
m, n:= nops(l), add(i, i=l);
g:= add(i*l[i], i=1..m)-(m+1)/2*(n-1);
`if`(n<2, 1, add(`if`(l[i]>0 and i<=g,
b(subsop(i=l[i]-1, l)), 0), i=1..m))
end:
A:= (n, k)-> b([k$n]):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
b[l_] := b[l] = Module[{m, n, g}, {m, n} = {Length[l], Total[l]}; g = Sum[i*l[[i]], {i, 1, m}] - (m+1)/2*(n-1); If[n < 2, 1, Sum[If[l[[i]] > 0 && i <= g, b[ReplacePart[l, i -> l[[i]] - 1]], 0], {i, 1, m}]]]; a[n_, k_] := b[Array[k&, n]]; Table [Table [a[n, d-n], {n, 0, d}], {d, 0, 9}] // Flatten (* Jean-François Alcover, Dec 06 2013, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 16 2012
STATUS
approved