The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215572 a(n) = 3*a(n-1) + 46*a(n-2) + a(n-3) with a(0)=2, a(1)=5, a(2)=106. 7
 2, 5, 106, 550, 6531, 44999, 435973, 3384404, 30252969, 246877464, 2135653370, 17793576423, 151867661753, 1276243154087, 10832435479322, 91356359187721, 773637352766062, 6534137016412674, 55281085635664595, 467187197014742851, 3951025667301212597, 33398969150217473532 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The Ramanujan-type sequence number 8 for the argument 2Pi/7 (see also A214683, A215112, A006053, A006054, A215076, A215100, A120757, A215560, A215569 for the numbers: 1, 1a, 2, 2a, 3-7 respectively). The sequence a(n) is one of the three special sequences (the remaining two are A215560 and A215569) connected with the following recurrence relation: (c(1)^4/c(2))^(n/3) + (c(2)^4/c(4))^(n/3) + (c(4)^4/c(1))^(n/3) = at(n) + bt(n)*7^(1/3) + ct(n)*49^(1/3), where c(j):=2*cos(2*Pi*j/7), and the sequences at(n), bt(n), and ct(n) are defined in comments to A215560 (see also A215569). It follows that a(n)=ct(3*n+2), at(3*n+2)=bt(3*n+2)=0, which implies the first formula below. We note that if a(n), a(n+1) and a(n+2) are all odd for some n in N then a(n+3) is even, a(n+4) is odd, a(n+5) and a(n+6) are both even, and the numbers a(n+7), a(n+8), a(n+9) are all odd again. In consequence, this situation hold for every n of the form 7*k+4, k=0,1,..., in the other words cyclical through all sequence a(n), n=4,5,... (from n=1 whenever we start from odd-even-even sequence). REFERENCES R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5. Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7. Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5. Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796. Index entries for linear recurrences with constant coefficients, signature (3,46,1). FORMULA 49^(1/3)*a(n) = (c(1)^4/c(2))^(n+2/3) + (c(2)^4/c(4))^(n+2/3) + (c(4)^4/c(1))^(n+2/3) = (c(1)*(c(1)/c(2))^(1/3))^(3*n+2) + (c(2)*(c(2)/c(4))^(1/3))^(3*n+2) + (c(4)*(c(4)/c(1))^(1/3))^(3*n+2). G.f.: (2-x-x^2)/(1-3*x-46*x^2-x^3). EXAMPLE From 4*a(1)+5*a(2)=a(3) we obtain 4*((c(1)^4/c(2))^(5/3) + (c(2)^4/c(4))^(5/3) + (c(4)^4/c(1))^(5/3)) + 5*((c(1)^4/c(2))^(8/3) + (c(2)^4/c(4))^(8/3) + (c(4)^4/c(1))^(8/3)) = (4 + 5*c(1)^4/c(2))*((c(1)^4/c(2))^(5/3) + (4 + 5*c(2)^4/c(4))*((c(2)^4/c(4))^(5/3) + (4 + 5*c(4)^4/c(1))*((c(4)^4/c(1))^(5/3) = (c(1)^4/c(2))^(11/3) + (c(2)^4/c(4))^(11/3) + (c(4)^4/c(1))^(11/3) = 550*49^(1/3). MATHEMATICA LinearRecurrence[{3, 46, 1}, {2, 5, 106}, 50] CoefficientList[Series[(2 - x - x^2)/(1 - 3*x - 46*x^2 - x^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 16 2017 *) PROG (PARI) Vec((2-x-x^2)/(1-3*x-46*x^2-x^3) + O(x^40)) \\ Michel Marcus, Apr 20 2016 CROSSREFS Cf. A214683, A215112, A006053, A006054, A215076, A215100, A120757, A215560, A215569. Sequence in context: A122696 A237267 A266284 * A023263 A070855 A228850 Adjacent sequences:  A215569 A215570 A215571 * A215573 A215574 A215575 KEYWORD nonn,easy AUTHOR Roman Witula, Aug 16 2012 EXTENSIONS More terms from Michel Marcus, Apr 20 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 21:46 EST 2020. Contains 332006 sequences. (Running on oeis4.)