login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215100 a(n) = 3*a(n-1) + 4*a(n-2) + a(n-3) with a(0)=2, a(1)=5, a(2)=22. 7
2, 5, 22, 88, 357, 1445, 5851, 23690, 95919, 388368, 1572470, 6366801, 25778651, 104375627, 422608286, 1711106017, 6928126822, 28051412820, 113577851765, 459867333397, 1861964820071, 7538941645566, 30524551550379, 123591386053472, 500411306007498, 2026124013786761 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Ramanujan-type sequence number 4 for the argument 2*Pi/7.  We have a(n)=bs(3n+2), where the sequence bs(n) and its two conjugate sequences as(n) and cs(n) are defined in the comments to A214683 (see also A215076, A120757, A006053). Since we also have as(3n+2)=cs(3n+2)=0 from the formula for S(n) (see Comments at A214683) we obtain the relation 7^(1/3)*a(n)= (c(1)/c(4))^(n + 2/3) + (c(4)/c(2))^(n + 2/3) + (c(2)/c(1))^(n + 2/3).

REFERENCES

R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

LINKS

Table of n, a(n) for n=0..25.

Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.

Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.

Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.

Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.

Index entries for linear recurrences with constant coefficients, signature (3,4,1).

FORMULA

G.f.: (2 - x - x^2)/(1 - 3*x - 4*x^2 - x^3).

EXAMPLE

From 4*a(2) = a(3) = 88 we get 88*7^(1/3) = 4*((c(1)/c(4))^(8/3) + (c(4)/c(2))^(8/3) + (c(2)/c(1))^(8/3))=(c(1)/c(4))^(11/3) + (c(4)/c(2))^(11/3) + (c(2)/c(1))^(11/3).

MATHEMATICA

LinearRecurrence[{3, 4, 1}, {2, 5, 22}, 40]

PROG

(PARI) Vec((2-x-x^2)/(1-3*x-4*x^2-x^3) + O(x^40)) \\ Michel Marcus, Apr 20 2016

CROSSREFS

Cf. A214683, A215076, A120757, A006053.

Sequence in context: A041006 A288028 A083465 * A307155 A144934 A030222

Adjacent sequences:  A215097 A215098 A215099 * A215101 A215102 A215103

KEYWORD

nonn,easy

AUTHOR

Roman Witula, Aug 03 2012

EXTENSIONS

More terms from Michel Marcus, Apr 20 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 28 08:22 EST 2020. Contains 332322 sequences. (Running on oeis4.)