

A120757


Expansion of x^2*(2+x)/(13*x4*x^2x^3).


13



0, 2, 7, 29, 117, 474, 1919, 7770, 31460, 127379, 515747, 2088217, 8455018, 34233669, 138609296, 561217582, 2272323599, 9200450421, 37251863241, 150829715006, 610697048403, 2472661868474, 10011603514040, 40536155064419
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The (1,1)entry of the matrix M^n, where M is the 3 X 3 matrix [0,1,1; 1,1,2; 1,2,2](n>=1).
a(n)/a(n1) tends to 4.0489173...an eigenvalue of M and a root to the characteristic polynomial x^3  3x^2  4x  1.
C(n):=a(n), with a(0):=1 (hence the o.g.f. for C(n) is (13*x2*x^2)/(13*x4*x^2x^3)), appears in the following formula for the nonnegative powers of rho*sigma, where rho:=2*cos(Pi/7) and sigma:=sin(3*Pi/7)/sin(Pi/7) = rho^21 are the ratios of the smaller and larger diagonal length to the side length in a regular 7gon (heptagon). See the Steinbach reference where the basis <1,rho,sigma> is used in an extension of the rational field. (rho*sigma)^n = C(n) + B(n)*rho + A(n)*sigma,n>=0, with B(n)= A122600(n1), B(0)=0, and A(n)= A181879(n). For the nonpositive powers see A085810(n)*(1)^n, A181880(n2)*(1)^n and A116423(n+1)*(1)^(n+1), respectively. See also a comment under A052547.
We have a(n)=cs(3n+1), where the sequence cs(n) and its two conjugate sequences as(n) and bs(n) are defined in the comments to the sequence A214683 (see also A215076, A215100, A006053). We call the sequence a(n) the Ramanujantype sequence number 5 for the argument 2Pi/7. Since as(3n+1)=bs(3n+1)=0, we obtain the following relation: 49^(1/3)*a(n) = (c(1)/c(4))^(n + 1/3) + (c(4)/c(2))^(n + 1/3) + (c(2)/c(1))^(n + 1/3), where c(j) := Cos(2Pi/7) (for more details and proofs see Witula et al.'s papers).  Roman Witula, Aug 02 2012


REFERENCES

R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012


LINKS

Table of n, a(n) for n=1..24.
Author?, Title? [Broken link?]
P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 2231, MR 1439165
Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.
Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.
Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.
Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779796.


FORMULA

a(n)=3a(n1)+4a(n2)+a(n3) (follows from the minimal polynomial of the matrix M). See also the o.g.f. given in the name.


EXAMPLE

a(7)=1919 because M^7= [1919,3458,4312;3458,6231,7770;4312,7770,9689].


MAPLE

with(linalg): M[1]:=matrix(3, 3, [0, 1, 1, 1, 1, 2, 1, 2, 2]): for n from 2 to 25 do M[n]:=multiply(M[1], M[n1]) od: seq(M[n][1, 1], n=1..25);


MATHEMATICA

LinearRecurrence[{3, 4, 1}, {0, 2, 7}, 40] (* Roman Witula, Aug 02 2012 *)


CROSSREFS

Cf. A214683, A215076, A215100, A006053.  Roman Witula, Aug 02 2012
Sequence in context: A155186 A203969 A199581 * A134169 A052961 A150662
Adjacent sequences: A120754 A120755 A120756 * A120758 A120759 A120760


KEYWORD

nonn


AUTHOR

Gary W. Adamson & Roger L. Bagula, Jul 01 2006


EXTENSIONS

Edited by N. J. A. Sloane, Dec 03 2006
New name, old name as comment; o.g.f.; reference.


STATUS

approved



