login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120757 Expansion of x^2*(2+x)/(1-3*x-4*x^2-x^3). 13
0, 2, 7, 29, 117, 474, 1919, 7770, 31460, 127379, 515747, 2088217, 8455018, 34233669, 138609296, 561217582, 2272323599, 9200450421, 37251863241, 150829715006, 610697048403, 2472661868474, 10011603514040, 40536155064419 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The (1,1)-entry of the matrix M^n, where M is the 3 X 3 matrix [0,1,1; 1,1,2; 1,2,2](n>=1).

a(n)/a(n-1) tends to 4.0489173...an eigenvalue of M and a root to the characteristic polynomial x^3 - 3x^2 - 4x - 1.

C(n):=a(n), with a(0):=1 (hence the o.g.f. for C(n) is (1-3*x-2*x^2)/(1-3*x-4*x^2-x^3)), appears in the following formula for the nonnegative powers of rho*sigma, where rho:=2*cos(Pi/7) and sigma:=sin(3*Pi/7)/sin(Pi/7) = rho^2-1 are the ratios of the smaller and larger diagonal length to the side length in a regular 7-gon (heptagon). See the Steinbach reference where the basis <1,rho,sigma> is used in an extension of the rational field. (rho*sigma)^n = C(n) + B(n)*rho + A(n)*sigma,n>=0, with B(n)= |A122600(n-1)|, B(0)=0, and A(n)= A181879(n). For the nonpositive powers see A085810(n)*(-1)^n, A181880(n-2)*(-1)^n and A116423(n+1)*(-1)^(n+1), respectively. See also a comment under A052547.

We have a(n)=cs(3n+1), where the sequence cs(n) and its two conjugate sequences as(n) and bs(n) are defined in the comments to the sequence A214683 (see also A215076, A215100, A006053). We call the sequence a(n) the Ramanujan-type sequence number 5 for the argument 2Pi/7. Since as(3n+1)=bs(3n+1)=0, we obtain the following relation: 49^(1/3)*a(n) = (c(1)/c(4))^(n + 1/3) + (c(4)/c(2))^(n + 1/3) + (c(2)/c(1))^(n + 1/3), where c(j) := Cos(2Pi/7) (for more details and proofs see Witula et al.'s papers). - Roman Witula, Aug 02 2012

REFERENCES

R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012

LINKS

Table of n, a(n) for n=1..24.

Author?, Title? [Broken link?]

P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31, MR 1439165

Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.

Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.

Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.

Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.

FORMULA

a(n)=3a(n-1)+4a(n-2)+a(n-3) (follows from the minimal polynomial of the matrix M). See also the o.g.f. given in the name.

EXAMPLE

a(7)=1919 because M^7= [1919,3458,4312;3458,6231,7770;4312,7770,9689].

MAPLE

with(linalg): M[1]:=matrix(3, 3, [0, 1, 1, 1, 1, 2, 1, 2, 2]): for n from 2 to 25 do M[n]:=multiply(M[1], M[n-1]) od: seq(M[n][1, 1], n=1..25);

MATHEMATICA

LinearRecurrence[{3, 4, 1}, {0, 2, 7}, 40] (* Roman Witula, Aug 02 2012 *)

CROSSREFS

Cf. A214683, A215076, A215100, A006053. - Roman Witula, Aug 02 2012

Sequence in context: A155186 A203969 A199581 * A134169 A052961 A150662

Adjacent sequences:  A120754 A120755 A120756 * A120758 A120759 A120760

KEYWORD

nonn

AUTHOR

Gary W. Adamson & Roger L. Bagula, Jul 01 2006

EXTENSIONS

Edited by N. J. A. Sloane, Dec 03 2006

New name, old name as comment; o.g.f.; reference.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 17 19:47 EDT 2014. Contains 246869 sequences.