login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120757 Expansion of x^2*(2+x)/(1-3*x-4*x^2-x^3). 13
0, 2, 7, 29, 117, 474, 1919, 7770, 31460, 127379, 515747, 2088217, 8455018, 34233669, 138609296, 561217582, 2272323599, 9200450421, 37251863241, 150829715006, 610697048403, 2472661868474, 10011603514040, 40536155064419 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The (1,1)-entry of the matrix M^n, where M is the 3 X 3 matrix [0,1,1; 1,1,2; 1,2,2].

a(n)/a(n-1) tends to 4.0489173...an eigenvalue of M and a root to the characteristic polynomial x^3 - 3x^2 - 4x - 1.

C(n):=a(n), with a(0):=1 (hence the o.g.f. for C(n) is (1-3*x-2*x^2)/(1-3*x-4*x^2-x^3)), appears in the following formula for the nonnegative powers of rho*sigma, where rho:=2*cos(Pi/7) and sigma:=sin(3*Pi/7)/sin(Pi/7) = rho^2-1 are the ratios of the smaller and larger diagonal length to the side length in a regular 7-gon (heptagon). See the Steinbach reference where the basis <1,rho,sigma> is used in an extension of the rational field. (rho*sigma)^n = C(n) + B(n)*rho + A(n)*sigma,n>=0, with B(n)= |A122600(n-1)|, B(0)=0, and A(n)= A181879(n). For the nonpositive powers see A085810(n)*(-1)^n, A181880(n-2)*(-1)^n and A116423(n+1)*(-1)^(n+1), respectively. See also a comment under A052547.

We have a(n)=cs(3n+1), where the sequence cs(n) and its two conjugate sequences as(n) and bs(n) are defined in the comments to the sequence A214683 (see also A215076, A215100, A006053). We call the sequence a(n) the Ramanujan-type sequence number 5 for the argument 2Pi/7. Since as(3n+1)=bs(3n+1)=0, we obtain the following relation: 49^(1/3)*a(n) = (c(1)/c(4))^(n + 1/3) + (c(4)/c(2))^(n + 1/3) + (c(2)/c(1))^(n + 1/3), where c(j) := Cos(2Pi/7) (for more details and proofs see Witula et al.'s papers). - Roman Witula, Aug 02 2012

REFERENCES

R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012

LINKS

Table of n, a(n) for n=1..24.

P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31, MR 1439165

Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.

Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.

Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.

Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.

Index entries for linear recurrences with constant coefficients, signature (3, 4, 1).

FORMULA

a(n)=3a(n-1)+4a(n-2)+a(n-3) (follows from the minimal polynomial of the matrix M). See also the o.g.f. given in the name.

EXAMPLE

a(7)=1919 because M^7= [1919,3458,4312;3458,6231,7770;4312,7770,9689].

MAPLE

with(linalg): M[1]:=matrix(3, 3, [0, 1, 1, 1, 1, 2, 1, 2, 2]): for n from 2 to 25 do M[n]:=multiply(M[1], M[n-1]) od: seq(M[n][1, 1], n=1..25);

MATHEMATICA

LinearRecurrence[{3, 4, 1}, {0, 2, 7}, 40] (* Roman Witula, Aug 02 2012 *)

PROG

(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 4, 3]^(n-1)*[0; 2; 7])[1, 1] \\ Charles R Greathouse IV, Jun 22 2016

CROSSREFS

Cf. A214683, A215076, A215100, A006053.

Sequence in context: A199581 A278815 A263367 * A134169 A052961 A150662

Adjacent sequences:  A120754 A120755 A120756 * A120758 A120759 A120760

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson & Roger L. Bagula, Jul 01 2006

EXTENSIONS

Edited by N. J. A. Sloane, Dec 03 2006

New name, old name as comment; o.g.f.; reference.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 15:32 EST 2016. Contains 279003 sequences.