OFFSET
2,2
COMMENTS
The complexity index B of a graph G is defined as Sum(a[i]/d[i]), where a[i] is the degree of the vertex i and d[i] is the distance degree of i (the sum of distances from i to all the vertices of G), the summation being over all the vertices of G (see the Bonchev & Buck reference, p. 215).
The numerators are A206484.
REFERENCES
D. Bonchev and G. A. Buck, Quantitative measures of network complexity, in: Complexity in Chemistry, Biology, and Ecology, Springer, New York, pp. 191-235.
FORMULA
The complexity index B of the path on n vertices is 4*Sum{1/[n(n+1-2j)+2j(j-1)], j=1..n} - 4/[n(n-1)].
EXAMPLE
a(3)=3 because the vertices of the path ABC have degrees 1, 2, 1 and distance degrees 3, 2, 3; then 1/3 + 2/2 + 1/3 = 5/3.
MAPLE
a := proc (n) options operator, arrow: denom(4*(sum(1/(n*(n+1-2*j)+2*j*(j-1)), j = 1 .. n))-4/(n*(n-1))) end proc: seq(a(n), n = 2 .. 25);
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Emeric Deutsch, Feb 19 2012
STATUS
approved