This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215404 a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3), with a(0)=0, a(1)=0 and a(2)=1. 5
 0, 0, 1, 4, 13, 39, 113, 322, 910, 2561, 7192, 20175, 56563, 158535, 444276, 1244936, 3488381, 9774440, 27387681, 76739023, 215018609, 602469686, 1688083894, 4729907909, 13252910268, 37133833451, 104046695091, 291532369743, 816855560248, 2288778436672, 6413014696201 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS We have a(n)=C(n;-1), A121449(n)=A(n;-1), A085810(n+1)=-B(n+1;-1), where A(n;d), B(n;d), and C(n;d), n in N, d in C, are so-called quasi-Fibonacci numbers defined and discussed in the comments to A121449 and in Witula-Slota-Warzynski's paper. It follows from formulas (3.47-49) in this paper that the value of A(n;1/3), B(n;1/3) and C(n;1/3) could be obtained from special convolution type identities for sequences a(n), A121449, and A085810. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Ilya Amburg, Krishna Dasaratha, Laure Flapan, Thomas Garrity, Chansoo Lee, Cornelia Mihaila, Nicholas Neumann-Chun, Sarah Peluse, Matthew Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239 [math.CO], 2015. Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3. Index entries for linear recurrences with constant coefficients, signature (4, -3, -1). FORMULA G.f.: x^2/(1-4*x+3*x^2+x^3). a(n) = (1/7)*((c(2)-c(4))*(1-c(1))^n + (c(4)-c(1))*(1-c(2))^n + (c(1)-c(2))*(1-c(4))^n), where c(j):=2*cos(2*Pi*j/7) - this formula is the Binet formula for a(n) (see the Binet formula (3.17) for the respective quasi-Fibonacci number C(n;d) for value d=-1 in the Witula-Slota-Warzynski paper). MATHEMATICA LinearRecurrence[{4, -3, -1}, {0, 0, 1}, 50] CoefficientList[Series[x^2/(1 - 4 x + 3 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *) PROG (PARI) Vec(x^2/(1-4*x+3*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012 (MAGMA) I:=[0, 0, 1]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..35]]; // Vincenzo Librandi, Sep 18 2015 CROSSREFS Cf. A077998, A006054, A121449, A085810, A052975, A094789, A005021, A121442. Sequence in context: A183112 A266429 A105693 * A290929 A121192 A133409 Adjacent sequences:  A215401 A215402 A215403 * A215405 A215406 A215407 KEYWORD nonn,easy AUTHOR Roman Witula, Aug 09 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 19 03:59 EDT 2019. Contains 321311 sequences. (Running on oeis4.)