login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094789 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,....,2n+1, s(0) = 1, s(2n+1) = 4. 14
1, 4, 14, 47, 155, 507, 1652, 5373, 17460, 56714, 184183, 598091, 1942071, 6305992, 20475625, 66484244, 215873462, 700937471, 2275930827, 7389902771, 23994866364, 77910846021, 252974934692, 821404463698, 2667083556359 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

In general a(n)= 2/m*Sum_{r=1..m-1} Sin(r*j*Pi/m)Sin(r*k*Pi/m)(2Cos(r*Pi/m))^(2n+1)) counts (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,....,2n+1, s(0) = j, s(2n+1) = k.

With interpolated zeros (0,0,0,1,0,4,0,14,...) counts walks of length n between the start and fourth nodes on P_6. - Paul Barry, Jan 26 2005

The Hankel transforms of this sequence or of this sequence with the first term omitted give 1, -2, 1, 1, -2, 1, ... . - Wathek Chammam, Nov 16 2011

Diagonal of the square array A216201. - Philippe Deléham, Mar 28 2013

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

W. Chammam, F. Marcellán and R. Sfaxi, Orthogonal polynomials, Catalan numbers, and a general Hankel determinant evaluation, Linear Algebra Appl. (2011), in press.

S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987; arXiv:1008.3359 [math.AG], 2010-2011. - N. J. A. Sloane, Dec 26 2012

Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.

Index entries for linear recurrences with constant coefficients, signature (5,-6,1).

FORMULA

a(n) = (2/7)*Sum_{k = 1..6} Sin(Pi*k/7)Sin(4Pi*k/7)(2Cos(Pi*k/7))^(2n + 1).

a(n) = 5*a(n - 1) - 6*a(n - 2) + a(n - 3).

G.f.: x*(x-1)/(-1 + 5*x - 6*x^2 + x^3). - Corrected by Vincenzo Librandi, Nov 10 2014

a(n) = 2^n*B(n; 1/2) = (1/7)*((c(1) - c(4))*(c(4))^(2n) + (c(2) - c(1))*(c(1))^(2n) + (c(4) - c(2))*(c(2))^(2n)), where c(j) := 2*cos(2Pi*j/7). Here B(n; d), n in N, d in C denotes the respective quasi-Fibonacci number - see A121449 and Witula-Slota-Warzynski paper for details (see also A052975, A085810, A077998, A006054, A121442). - Roman Witula, Aug 09 2012

a(n+1) = A216201(n,n+2) = A216201(n,n+3). Philippe Deléham, Mar 28 2013

MATHEMATICA

f[n_] := FullSimplify[ TrigToExp[(2/7)Sum[ Sin[Pi*k/7]Sin[4Pi*k/7](2Cos[Pi*k/7])^(2n + 1), {k, 1, 6}]]]; Table[ f[n], {n, 25}] (* Robert G. Wilson v, Jun 18 2004 *)

LinearRecurrence[{5, -6, 1}, {1, 4, 14}, 50] (* Roman Witula, Aug 09 2012 *)

CoefficientList[Series[(x - 1) / (- 1 + 5 x - 6 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)

PROG

(MAGMA) I:=[1, 4, 14]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Nov 10 2014

(PARI) Vec(x*(x-1)/(-1 + 5*x - 6*x^2 + x^3) + O(x^40)) \\ Michel Marcus, Nov 10 2014

CROSSREFS

Cf. A094790, A080937, A005021.

Sequence in context: A263622 A104487 A247210 * A273714 A082574 A289780

Adjacent sequences:  A094786 A094787 A094788 * A094790 A094791 A094792

KEYWORD

nonn,easy

AUTHOR

Herbert Kociemba, Jun 11 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 18:51 EST 2019. Contains 320328 sequences. (Running on oeis4.)