login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055203 Number of different relations between n intervals on a line. 12
1, 1, 13, 409, 23917, 2244361, 308682013, 58514835289, 14623910308237, 4659168491711401, 1843200116875263613, 886470355671907534969, 509366445167037318008557, 344630301458257894126724041, 271188703889907190388528763613, 245570692377888837925941696215449 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

S. R. Schwer, Dependances temporelles: les mots pour le dire, Journees Intelligence Artificielle, 1998.

S. R. Schwer, Enumerating and generating Allen's algebra, in preparation

LINKS

T. D. Noe, Table of n, a(n) for n=0..100

IBM Ponder This, Jan 01 2001

FORMULA

a(n) = Sum_(i = 2 to 2n) lambda(i, n), with lambda(p, 1) = if p = 2 then 1 else 0; lambda(p, n) = (p*(p-1)/2)*(lambda(p, n-1)+2*lambda(p-1, n-1)+lambda(p-2, n-1)).

lambda(p, n) = sum_k[( - 1)^(p + k) * C(p, k) * ((k - 1)*k/2)^n]. So if T(m, 0), T(m, 1), ..., T(m, m) is any row of A035317 with m >= 2n - 1 then a(n) = sum_j[( - 1)^j * T(m, j) * ((m - j + 1)*(m - j)/2)^n]; e.g. a(2) = 13 = 1*6^2 - 3*3^2 + 4*1^2 - 2*0^2 = 1*10^2 - 4*6^2 + 7*3^2 - 6*1^2 + 3*0^2 = 1*15^2 - 5*10^2 + 11*6^2 - 13*3^2 + 9*1^2 - 3*0^2 etc. while a(3) = 409 = 1*15^3 - 5*10^3 + 11*6^3 - 13*3^3 + 9*1^3 - 3*0^3 etc. Henry Bottomley, Jan 03 2001

Row sums of A122193. - Vladeta Jovovic, Aug 24 2006

a(n) = Sum_{k=0..n} k!*Stirling2(n,k)*A121251(k). - Vladeta Jovovic, Aug 25 2006

E.g.f.: Sum_{m>=0} exp(x*binomial(m,2))/2^(m+1). - Vladeta Jovovic, Sep 24 2006

a(n) = Sum_{m>=0} binomial(m,2)^n/2^(m+1). - Vladeta Jovovic, Aug 17 2006

a(n) = (1/2^n)*Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A000670(n+k). - Vladeta Jovovic, Aug 17 2006

a(n) ~ n! * n^n * 2^(n-1) / (exp(n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Mar 15 2014

EXAMPLE

In case n = 2 this is the Delannoy number a(2) = D(2,2) = 13.

a(2) = 13 because if you have two intervals [a1,a2] and [b1,b2], using a for a1 or a2 and b for b1 or b2 and writing c if an a is at the same place as a b, we get the following possibilities: aabb, acb, abab, cab, abc, baab, abba, cc, bac, cba, baba, bca, bbaa

MAPLE

lambda := proc(p, n) option remember; if n = 1 then if p = 2 then RETURN(1) else RETURN(0) fi; else RETURN((p*(p-1)/2)*(lambda(p, n-1)+2*lambda(p-1, n-1)+lambda(p-2, n-1))) fi; end; A055203 := n->add(lambda(i, n), i=2..2*n);

A055203 := proc(n) local k; add(A078739(n, k)*k!, k=0..2*n)/2^n end:

seq(A055203(n), n=0..15); # - Peter Luschny, Mar 25 2011

MATHEMATICA

a[n_] := Sum[((m-1)*m)^n / 2^(m+n+1), {m, 0, Infinity}]; Table[a[n], {n, 0, 15}] (* Jean-Fran├žois Alcover, Oct 10 2011, after Vladeta Jovovic *)

With[{r = 2}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 15}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)

CROSSREFS

Cf. A035317, A055809, A055810, A078739, A122193.

Row n=2 of A262809.

Sequence in context: A075672 A069876 A126086 * A088919 A201537 A258178

Adjacent sequences:  A055200 A055201 A055202 * A055204 A055205 A055206

KEYWORD

nonn,nice,easy

AUTHOR

Sylviane R. Schwer (schwer(AT)lipn.univ-paris13.fr), Jun 22 2000

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Oct 04 2000; and from N. J. A. Sloane Jan 03, 2001.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 12:25 EST 2016. Contains 278971 sequences.