OFFSET
1,2
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..2211
Mike Winkler, The algorithmic structure of the finite stopping time behavior of the 3x + 1 function, arXiv:1709.03385 [math.GM], Sep 2017. [see (17) on p. 9]
EXAMPLE
a(4) = 5! / ( 2! * 3! ) = 5*4/2 = 10.
From Mike Winkler, Oct 30 2017: (Start)
The next table shows the output using the PARI function NextPermutation(a), (cf. PROG)
[0, 0, 1, 1, 1] 1
[0, 1, 0, 1, 1] 2
[0, 1, 1, 0, 1] 3
[0, 1, 1, 1, 0] 4
[1, 0, 0, 1, 1] 5
[1, 0, 1, 0, 1] 6
[1, 0, 1, 1, 0] 7
[1, 1, 0, 0, 1] 8
[1, 1, 0, 1, 0] 9
[1, 1, 1, 0, 0] 10
(End)
MATHEMATICA
Table[(# - 1)!/((# - n)!*(n - 1)!) &@ Floor[n Log[2, 3]], {n, 30}] (* Michael De Vlieger, Oct 06 2017 *)
PROG
(PARI) /* method used in the linked paper arXiv:1709.03385 */
NextPermutation(a) = {i=#a-1; while(!(i<1 || a[i]<a[i+1]), i--); if(i<1, return(0)); k=#a; while(!(a[k]>a[i]), k--); t=a[k]; a[k]=a[i]; a[i]=t; for(k=i+1, (#a+i)/2, t=a[k]; a[k]=a[#a+1+i-k]; a[#a+1+i-k]=t); return(a)}
/* example for n = 4 */
{j=1; a=[0, 0, 1, 1, 1]; until(a==0, print(a" "j); j++; a=NextPermutation(a))} \\ Mike Winkler, Oct 30 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Frank Ellermann, Oct 05 2017
STATUS
approved