login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052918 a(0)=1, a(1)=5, a(n+1) = 5*a(n) + a(n-1). 29
1, 5, 26, 135, 701, 3640, 18901, 98145, 509626, 2646275, 13741001, 71351280, 370497401, 1923838285, 9989688826, 51872282415, 269351100901, 1398627786920, 7262490035501, 37711077964425, 195817879857626 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

[A085448(n)]^2 - 29*[a(n-1)]^2 = 4*(-1)^n. - Gary W. Adamson, Jul 01 2003, corrected Oct 07 2008

a(p) == 29^((p-1)/2)) mod p, for odd primes p. - Gary W. Adamson, Feb 22 2009

For more information about this type of recurrence, follow the Khovanova link and see A054413, A086902 and A178765. - Johannes W. Meijer, Jun 12 2010

Binomial transform of A015523. - Johannes W. Meijer, Aug 01 2010

For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 5's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011

a(n) equals the number of words of length n on alphabet {0,1,...,5} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 901

M. Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8, section 3.

M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (5,1).

FORMULA

G.f.: -1/(-1 + 5*x + x^2).

a(3n) = A041047(5n), a(3n+1) = A041047(5n+3), a(3n+2) = 2*A041047(5n+4). - Henry Bottomley, May 10 2000

Sum(1/29*(5+2*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+5*_Z+_Z^2)).

a(n-1) = (((5 + sqrt(29))/2)^n - ((5 - sqrt(29))/2)^n)/sqrt(29). - Gary W. Adamson, Jul 01 2003

a(n)= U(n, 5*I/2)*(-I)^n with I^2=-1 and Chebyshev's U(n, x/2)=S(n, x) polynomials. See triangle A049310.

Let M = {{0, 1}, {1, 5}}, v[1] = {0, 1}, v[n] = M.v[n - 1]; then a = v[n][[1]]. - Roger L. Bagula, May 29 2005

a(n)=F(n, 5), the n-th Fibonacci polynomial evaluated at x=5. - T. D. Noe, Jan 19 2006

a(n), n>0 = denominator of n-th convergent to [1, 4, 5, 5, 5,...]. Continued fraction [1, 4, 5, 5, 5,...] = .807417596..., the inradius of a right triangle with legs 2 and 5. n-th convergent = A100237(n)/A052918(n), the first few being: 1/1, 4/5, 21/26, 109/135, 566/701,... - Gary W. Adamson, Dec 21 2007

From Johannes W. Meijer, Jun 12 2010: (Start)

a(2n+1) = 5*A097781(n), a(2n) = A097835(n).

Limit(a(n+k)/a(k), k=infinity) = (A087130(n) + A052918(n-1)*sqrt(29))/2.

Limit(A087130(n)/A052918(n-1), n=infinity) = sqrt(29).

(End)

Limit(a(n+k)/a(k),k=infinity) = (A087130(n)+A052918(n-1)*sqrt(29))/2. - Johannes W. Meijer, Aug 01 2010

From L. Edson Jeffery, Jan 07 2012: (Start)

Define the 2 X 2 matrix A=[1,1; 5,4]. Then:

a(n) = (1/5)*[A^(n+2)-A^(n+1)]_(1,1);

a(n) = [A^(n+1)]_(1,2);

a(n) = (1/5)*[A^(n+1)]_(2,1);

a(n) = [sum[k=0..n, A^k]]_(2,2). (End)

sum_{n>=0} (-1)^n/(a(n)*a(n+1)) = (sqrt(29)-5)/2. - Vladimir Shevelev, Feb 23 2013

MAPLE

spec := [S, {S=Sequence(Union(Z, Z, Z, Z, Z, Prod(Z, Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);

a[0]:=1: a[1]:=5: for n from 2 to 26 do a[n]:=5*a[n-1]+a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006

with(combinat):a:=n->fibonacci(n, 5):seq(a(n), n=1..22); # Zerinvary Lajos, Dec 07 2008

MATHEMATICA

  a=0; lst={}; s=0; Do[a=s-(a-1); AppendTo[lst, a]; s+=a*5, {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *)

LinearRecurrence[{5, 1}, {1, 5}, 30] (* Vincenzo Librandi, Feb 23 2013 *)

Table[Fibonacci[n + 1, 5], {n, 0, 20}] (* Vladimir Reshetnikov, May 08 2016 *)

PROG

(Sage) [lucas_number1(n, 5, -1) for n in xrange(1, 22)] # Zerinvary Lajos, Apr 24 2009

(PARI) Vec(-1/(-1+5*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Nov 20 2011

(MAGMA) I:=[1, 5]; [n le 2 select I[n] else 5*Self(n-1)+Self(n-2): n in [1..25]]; // Vincenzo Librandi, Feb 23 2013

CROSSREFS

Cf. A000045, A000129, A006190, A001076, A005668, A085448, A099365 (squares), A100237, A175184 (Pisano periods), A201005 (prime subsequence).

Cf. A243399.

Sequence in context: A047768 A022032 A255118 * A255633 A255815 A018903

Adjacent sequences:  A052915 A052916 A052917 * A052919 A052920 A052921

KEYWORD

easy,nonn,changed

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 21 16:46 EDT 2017. Contains 289643 sequences.