login
A353131
Triangle read by rows of partial Bell polynomials B_{n,k} (x_1,...,x_{n-k+1}) evaluated at 2, 2, 12, 72, ..., (n-k)(n-k+1)!, n>=1, 1<=k<=n.
2
2, 2, 4, 12, 12, 8, 72, 108, 48, 16, 480, 960, 600, 160, 32, 3600, 9360, 7320, 2640, 480, 64, 30240, 100800, 95760, 42000, 10080, 1344, 128, 282240, 1189440, 1350720, 700560, 201600, 34944, 3584, 256, 2903040, 15240960, 20442240, 12337920, 4142880, 854784, 112896, 9216, 512
OFFSET
1,1
LINKS
E. T. Bell, Partition polynomials, Ann. Math., 29 (1927-1928), 38-46.
E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258-277.
Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
FORMULA
T(n,k) = A353132(n,k)*(n-k+1)!.
Sum_{k=1..n} T(n,k)/(n-k+1)! = A349458(n).
EXAMPLE
For n=4,k=2, the partial Bell polynomial is B_{4,2}(x_1,x_2,x_3)=4x_1x_3+3x_2^2, so a(4,2)=B_{4,2}(2,2,12)=4*2*12+3*2^2=108.
Triangle starts:
[1] 2;
[2] 2, 4;
[3] 12, 12, 8;
[4] 72, 108, 48, 16;
[5] 480, 960, 600, 160, 32;
[6] 3600, 9360, 7320, 2640, 480, 64;
[7] 30240, 100800, 95760, 42000, 10080, 1344, 128;
[8] 282240, 1189440, 1350720, 700560, 201600, 34944, 3584, 256.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Jordan Weaver, Apr 24 2022
STATUS
approved