login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134435 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k odd entries that are followed by a smaller entry (n >= 1, k >= 0). 6
1, 2, 2, 4, 12, 12, 12, 72, 36, 144, 432, 144, 144, 1728, 2592, 576, 2880, 17280, 17280, 2880, 2880, 57600, 172800, 115200, 14400, 86400, 864000, 1728000, 864000, 86400, 86400, 2592000, 12960000, 17280000, 6480000, 518400 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Row n has ceiling(n/2) entries. T(2n,0) = T(2n+1,0) = n!(n+1)! = A010790(n).

T(n,k) is also the number of permutations of {1,2,...,n} having k adjacent pairs of the form (odd, odd) (0 <= k <= ceiling(n,2)-1). Example: T(3,1)=4 because we have 132, 213, 312 and 231. - Emeric Deutsch, Dec 14 2008

LINKS

Table of n, a(n) for n=1..36.

S. Kitaev and J. Remmel, Classifying descents according to parity, Annals of Combinatorics, 11, 2007, 173-193.

FORMULA

T(2n,k) = (n!)^2*C(n-1,k) C(n+1,k+1); T(2n+1,k) = n!(n+1)! * C(n,k) * C(n+1,k).

EXAMPLE

T(3,1) = 4 because we have 132, 312, 231 and 321.

Triangle starts:

    1;

    2;

    2,   4;

   12,  12;

   12,  72,  36;

  144, 432, 144;

MAPLE

T:=proc(n, k) if `mod`(n, 2)=0 then binomial((1/2)*n-1, k)*binomial((1/2)* n+1, k+1)*factorial((1/2)*n)^2 elif `mod`(n, 2)=1 then factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2)*binomial((1/2)*n-1/2, k)*binomial((1/2)* n+1/2, k) else 0 end if end proc: for n to 11 do seq(T(n, k), k=0..ceil((1/2)*n)-1) end do; # yields sequence in triangular form

CROSSREFS

Cf. A010790, A134434.

Sequence in context: A059343 A285944 A112473 * A136718 A112362 A134720

Adjacent sequences:  A134432 A134433 A134434 * A134436 A134437 A134438

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Nov 22 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 04:24 EST 2021. Contains 340332 sequences. (Running on oeis4.)