The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022921 Number of 2^m between 3^n and 3^(n+1). 9
 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Represents increments between successive terms of allowable dropping times in the Collatz (3x+1) problem. That is, a(n) = A020914(n+1) - A020914(n). - K. Spage, Oct 23 2009 LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 Mike Winkler, The algorithmic structure of the finite stopping time behavior of the 3x + 1 function, arXiv:1709.03385 [math.GM], 2017. FORMULA a(n) = floor((n+1)*log_2(3)) - floor(n*log_2(3)). a(n) = A122437(n+2) - A122437(n+1) - 1. - K. Spage, Oct 23 2009 First differences of A020914. - Robert G. Wilson v, May 25 2014 First differences of A056576. - L. Edson Jeffery, Dec 12 2014 MAPLE Digits := 100: c1 := log(3.)/log(2.): A022921 := n->floor((n+1)*c1)-floor(n*c1); seq(ilog2(3^(n+1)) - ilog2(3^n), n=0 .. 1000); # Robert Israel, Dec 11 2014 MATHEMATICA i2 = 1; Table[p = i2; While[i2++; 2^i2 < 3^(n + 1)]; i2 - p, {n, 0, 98}] (* T. D. Noe, Feb 28 2014 *) f[n_] := Floor[ Log2[ 3^n] + 1]; Differences@ Array[f, 106, 0] (* Robert G. Wilson v, May 25 2014 *) CROSSREFS Cf. A020914, A056576, A076227, A100982, A122437. See also A020857 (decimal expansion of log_2(3)). Sequence in context: A326194 A331251 A309858 * A080763 A245920 A165413 Adjacent sequences:  A022918 A022919 A022920 * A022922 A022923 A022924 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 12:39 EDT 2020. Contains 334626 sequences. (Running on oeis4.)