G.f.: x/(1 - 5*x + 5*x^2).
a(n) = (((5 + sqrt(5))/2)^n - ((5 - sqrt(5))/2)^n)/sqrt(5).
a(n) = A093130(n)/2^n.
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*Fibonacci(j-k). - Paul Barry, Feb 15 2005
a(n) = Sum_{k=0..n} C(n, k)*2^k*Fibonacci(n-k) = Sum_{k=0..n} C(n, k)*2^(n-k) * Fibonacci(k). - Paul Barry, Apr 22 2005
a(n) = A030191(n-1), n > 0. - R. J. Mathar, Sep 05 2008
E.g.f.: 2*exp(5*x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Ilya Gutkovskiy, Aug 11 2017
From Kai Wang, Dec 22 2019: (Start)
a(n) = Sum_{i=0..n-1; j=0..n-1; i+2*j=n-1} 5^i*((i+j)!/(i!*j!)).
a(n*k)/a(k) = Sum_{i=0..n-1; j=0..n-1; i+2*j=n-1} (-1)^(j*(k-1))*b(k)^i*((i+j)!/(i!*j!)).
a((2*m+1)*k)/a(k) = Sum_{i=0..m-1} (-1)^(i*k)*A020876((2*m-2*i)*k) + 5^(m*k).
a(2*m*k)/a(k) = Sum_{i=0..m-1} (-1)^(i*k)*A020876((2*m-2*i-1)*k}.
a(m+r)*a(n+s) - a(m+s)*a(n+r) = -5^(n+s)*a(m-n)*a(r-s).
a(m+r)*a(n+s) + a(m+s)*a(n+r) = (2*A020876(m+n+r+s) - 5^(n+s)*A020876(m-n)*A020876(r-s))/5.
A020876(m+r)*A020876(n+s) - A020876(m+s)*A020876(n+r) = 5^(n+s+1)*a(m-n)*a(r-s).
A020876(m+r)*A020876(n+s) - 5*a(m+s)*a(n+r) = 5^(n+s)*A020876(m-n)*A020876(r-s).
A020876(m+r)*A020876(n+s) + 5*a(m+s)*a(n+r) = 2*A020876(m+n+r+s) + 5^(n+s+1)*a(m-n)*a(r-s).
a(n)^2 - a(n+1)*a(n-1) = 5^(n-1).
a(n)^2 - a(n+r)*a(n-r) = 5^(n-r)*a(r)^2.
a(m)*a(n+1) - a(m+1)*a(n) = 5^n*a(m-n).
a(m-n) = (a(m)*A020876(n) - A020876(m)*a(n))/(2*5^n).
a(m+n) = (a(m)*A020876(n) + A020876(m)*a(n))/2.
A020876(n)^2 - A020876(n+r)*A020876(n-r) = -5^(n-r+1)*a(r)^2.
A020876(m)*A020876(n+1) - A020876(m+1)*A020876(n) = -5^(n+1)*a(m-n).
A020876(m+n) - 5^(n)*A020876(m-n) = 5*a(m)*a(n).
A020876(m-n) = (A020876(m)*A020876(n) - 5*a(m)*a(n))/(2*5^n).
A020876(m+n) = (A020876(m)*A020876(n) + 5*a(m)*a(n))/2. (End)
a(2*n) = 5^n*Fibonacci(2*n), a(2*n+1) = 5^n*Lucas(2*n+1). - G. C. Greubel, Dec 27 2019
|