login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048887
Array T read by antidiagonals, where T(m,n) = number of compositions of n into parts <= m.
19
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 7, 8, 1, 1, 2, 4, 8, 13, 13, 1, 1, 2, 4, 8, 15, 24, 21, 1, 1, 2, 4, 8, 16, 29, 44, 34, 1, 1, 2, 4, 8, 16, 31, 56, 81, 55, 1, 1, 2, 4, 8, 16, 32, 61, 108, 149, 89, 1, 1, 2, 4, 8, 16, 32, 63, 120, 208, 274, 144, 1
OFFSET
1,5
COMMENTS
Taking finite differences of array columns from the top down, we obtain (1; 1,1; 1,2,1; 1,4,2,1; ...) = A048004 rows. - Gary W. Adamson, Aug 20 2010
T(m,n) is the number of binary words of length n-1 with < m consecutive 1's. - Geoffrey Critzer, Sep 02 2012
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton, NJ, 1978, p. 154.
LINKS
Hsin-Po Wang and Chi-Wei Chin, On Counting Subsequences and Higher-Order Fibonacci Numbers, arXiv:2405.17499 [cs.IT], 2024. See p. 2.
FORMULA
G.f.: (1-z)/[1-2z+z^(t+1)].
EXAMPLE
T(2,5) counts 11111, 1112, 1121, 1211, 2111, 122, 212, 221, where "1211" abbreviates the composition 1+2+1+1.
These eight compositions correspond respectively to: {0,0,0,0}, {0,0,0,1}, {0,0,1,0}, {0,1,0,0}, {1,0,0,0}, {0,1,0,1}, {1,0,0,1}, {1,0,1,0} per the bijection given by N. J. A. Sloane in A048004. - Geoffrey Critzer, Sep 02 2012
The array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 5, 8, 13, ...
1, 2, 4, 7, 13, ...
1, 2, 4, 8, ...
1, 2, 4, ...
1, 2, ...
1, ...
MAPLE
G := t->(1-z)/(1-2*z+z^(t+1)): T := (m, n)->coeff(series(G(m), z=0, 30), z^n): matrix(7, 12, T);
# second Maple program:
T:= proc(m, n) option remember; `if`(n=0 or m=1, 1,
add(T(m, n-j), j=1..min(n, m)))
end:
seq(seq(T(1+d-n, n), n=1..d), d=1..14); # Alois P. Heinz, May 21 2013
MATHEMATICA
Table[nn=10; a=(1-x^k)/(1-x); b=1/(1-x); c=(1-x^(k-1))/(1-x); CoefficientList[ Series[a b/(1-x^2 b c), {x, 0, nn}], x], {k, 1, nn}]//Grid (* Geoffrey Critzer, Sep 02 2012 *)
T[m_, n_] := T[m, n] = If[n == 0 || m == 1, 1, Sum[T[m, n-j], {j, 1, Min[n, m]}]]; Table[Table[T[1+d-n, n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Nov 12 2014, after Alois P. Heinz *)
CROSSREFS
Rows: A000045 (Fibonacci), A000073 (tribonacci), A000078 (tetranacci), etc.
Essentially a reflected version of A092921. See A048004 and A126198 for closely related arrays.
Sequence in context: A004070 A180562 A199711 * A360493 A360492 A360491
KEYWORD
nonn,tabl
STATUS
approved