OFFSET
0,3
COMMENTS
Starting (1, 1, 2, 7, 21, 51, 106, ...), = Narayana transform (A001263) of [1, 0, 1, 0, 0, 0, ...]. - Gary W. Adamson, Jan 04 2008
In 2022, Han Wang and Zhi-Wei Sun provided a proof of the formula a(n) = 1 + n^2*(n^2-1)/12 via eigenvalues. See A355175 for my conjecture on det[(i-j)^2+d(i,j)]_{1<=i,j<=n}, where d(i,j) is 1 or 0 according as i = j or not. - Zhi-Wei Sun, Jun 28 2022
LINKS
Han Wang and Zhi-Wei Sun, Evaluations of three determinants, arXiv:2206.12317 [math.NT], 2022.
Han Wang and Zhi-Wei Sun, Characteristic polynomials of the matrices with (j, k)-entry q^(j±k) + t, Bull. Australian Math. Soc. (2024). See references.
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = (n^4-n^2+12)/12; a(n) = A002415(n)+1.
G.f.: (x^4-3*x^3+7*x^2-4*x+1) / (1-x)^5. - Colin Barker, Jun 24 2013
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 2, 7, 21, 51}, 50] (* Harvey P. Dale, Aug 17 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Feb 01 2003
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Oct 23 2024
STATUS
approved