login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122265 10th-order Fibonacci numbers: a(n+1) = a(n)+...+a(n-9) with a(0) = ... = a(8) = 0, a(9) = 1. 3
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172, 16336, 32656, 65280, 130496, 260864, 521472, 1042432, 2083841, 4165637, 8327186, 16646200, 33276064, 66519472, 132973664, 265816832, 531372800, 1062224128 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,12

COMMENTS

The (1,10)-entry of the matrix M^n, where M is the 10 X 10 matrix {{0,1,0,0,0, 0,0,0,0,0},{0,0,1,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,0}, {0,0,0,0,0,1,0,0,0,0},{0,0,0,0,0,0,1,0,0,0},{0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0, 0,0,0,1,0},{0,0,0,0,0,0,0,0,0,1},{1,1,1,1,1,1,1,1,1,1}}.

LINKS

Robert Price, Table of n, a(n) for n = 0..1000

Martin Burtscher, Igor Szczyrba, RafaƂ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.

Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1,1,1,1).

FORMULA

a(n) = Sum_{j=1..10} a(n-j) for n>=10; a(n) = 0 for 0<=n<=8, a(9) = 1 (follows from the minimal polynomial of M; a Maple program based on this recurrence relation is much slower than the given Maple program, based on the definition).

G.f.: -x^9/(-1+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009

Another form of the g.f. f: f(z)=(z^(k-1)-z^(k))/(1-2*z+z^(k+1)) with k=10. Then a(n)=sum((-1)^i*binomial(n-k+1-k*i,i)*2^(n-k+1-(k+1)*i),i=0..floor((n-k+1)/(k+1)))-sum((-1)^i*binomial(n-k-k*i,i)*2^(n-k-(k+1)*i),i=0..floor((n-k)/(k+1))) with k=10 and sum(alpha(i),i=m..n)=0 for m>n. - Richard Choulet, Feb 22 2010

MAPLE

with(linalg): p:=-1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9+x^10: M[1]:=transpose(companion(p, x)): for n from 2 to 40 do M[n]:=multiply(M[n-1], M[1]) od: seq(M[n][1, 10], n=1..40);

k:=10:for n from 0 to 50 do l(n):=sum((-1)^i*binomial(n-k+1-k*i, i)*2^(n-k+1-(k+1)*i), i=0..floor((n-k+1)/(k+1)))-sum((-1)^i*binomial(n-k-k*i, i)*2^(n-k-(k+1)*i), i=0..floor((n-k)/(k+1))):od:seq(l(n), n=0..50); k:=10:a:=taylor((z^(k-1)-z^(k))/(1-2*z+z^(k+1)), z=0, 51); for p from 0 to 50 do j(p):=coeff(a, z, p):od :seq(j(p), p=0..50); # Richard Choulet, Feb 22 2010

MATHEMATICA

M = {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}; v[1] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; v[n_] := v[n] = M.v[n - 1]; a = Table[Floor[v[n][[1]]], {n, 1, 50}]

a={1, 0, 0, 0, 0, 0, 0, 0, 0, 0}; Flatten[Prepend[Table[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s, {n, 60}], Table[0, {m, Length[a]-1}]]] (* Vladimir Joseph Stephan Orlovsky, Nov 18 2009 *)

LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, 50]  (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)

With[{nn=10}, LinearRecurrence[Table[1, {nn}], Join[Table[0, {nn-1}], {1}], 50]] (* Harvey P. Dale, Aug 17 2013 *)

CROSSREFS

Cf. A000322, A001591, A001592, A079262.

Cf. A001591, A001592, A122189, A079262, A104144, A168082, A168083, A168084. - Richard Choulet, Feb 22 2010

Cf. A257227, A257228 for primes in this sequence.

Sequence in context: A145116 A172319 A234591 * A194633 A243088 A113010

Adjacent sequences:  A122262 A122263 A122264 * A122266 A122267 A122268

KEYWORD

nonn

AUTHOR

Roger Bagula and Gary W. Adamson, Oct 18 2006

EXTENSIONS

Edited by N. J. A. Sloane, Oct 29 2006 and Mar 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 15:27 EDT 2017. Contains 292531 sequences.