OFFSET
0,12
COMMENTS
The (1,10)-entry of the matrix M^n, where M is the 10 X 10 matrix {{0,1,0,0,0, 0,0,0,0,0},{0,0,1,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,0}, {0,0,0,0,0,1,0,0,0,0},{0,0,0,0,0,0,1,0,0,0},{0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0, 0,0,0,1,0},{0,0,0,0,0,0,0,0,0,1},{1,1,1,1,1,1,1,1,1,1}}.
LINKS
Robert Price, Table of n, a(n) for n = 0..1000
Martin Burtscher, Igor Szczyrba, and RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
Kai Wang, Identities for generalized enneanacci numbers, Generalized Fibonacci Sequences (2020).
Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1,1,1,1).
FORMULA
a(n) = Sum_{j=1..10} a(n-j) for n>=10; a(n) = 0 for 0<=n<=8, a(9) = 1 (follows from the minimal polynomial of M; a Maple program based on this recurrence relation is much slower than the given Maple program, based on the definition).
G.f.: -x^9/(-1+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
Another form of the g.f. f: f(z)=(z^(k-1)-z^(k))/(1-2*z+z^(k+1)) with k=10. Then a(n)=sum((-1)^i*binomial(n-k+1-k*i,i)*2^(n-k+1-(k+1)*i),i=0..floor((n-k+1)/(k+1)))-sum((-1)^i*binomial(n-k-k*i,i)*2^(n-k-(k+1)*i),i=0..floor((n-k)/(k+1))) with k=10 and sum(alpha(i),i=m..n)=0 for m>n. - Richard Choulet, Feb 22 2010
MAPLE
with(linalg): p:=-1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9+x^10: M[1]:=transpose(companion(p, x)): for n from 2 to 40 do M[n]:=multiply(M[n-1], M[1]) od: seq(M[n][1, 10], n=1..40);
k:=10:for n from 0 to 50 do l(n):=sum((-1)^i*binomial(n-k+1-k*i, i)*2^(n-k+1-(k+1)*i), i=0..floor((n-k+1)/(k+1)))-sum((-1)^i*binomial(n-k-k*i, i)*2^(n-k-(k+1)*i), i=0..floor((n-k)/(k+1))):od:seq(l(n), n=0..50); k:=10:a:=taylor((z^(k-1)-z^(k))/(1-2*z+z^(k+1)), z=0, 51); for p from 0 to 50 do j(p):=coeff(a, z, p):od :seq(j(p), p=0..50); # Richard Choulet, Feb 22 2010
MATHEMATICA
M = {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}; v[1] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; v[n_] := v[n] = M.v[n - 1]; a = Table[Floor[v[n][[1]]], {n, 1, 50}]
a={1, 0, 0, 0, 0, 0, 0, 0, 0, 0}; Flatten[Prepend[Table[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s, {n, 60}], Table[0, {m, Length[a]-1}]]] (* Vladimir Joseph Stephan Orlovsky, Nov 18 2009 *)
LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
With[{nn=10}, LinearRecurrence[Table[1, {nn}], Join[Table[0, {nn-1}], {1}], 50]] (* Harvey P. Dale, Aug 17 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula and Gary W. Adamson, Oct 18 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 29 2006 and Mar 05 2011
STATUS
approved