This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000322 Pentanacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) with a(0)=a(1)=a(2)=a(3)=a(4)=1. (Formerly M3786 N1542) 51
 1, 1, 1, 1, 1, 5, 9, 17, 33, 65, 129, 253, 497, 977, 1921, 3777, 7425, 14597, 28697, 56417, 110913, 218049, 428673, 842749, 1656801, 3257185, 6403457, 12588865, 24749057, 48655365, 95653929, 188050673, 369697889, 726806913, 1428864769 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS For n>=0: a(n+2) is the number of length-n strings with letters {0,1,2,3,4} where the letter x is followed by at least x zeros, see fxtbook link below. - Joerg Arndt, Apr 08 2011 Satisfies Benford's law [see A186192] - N. J. A. Sloane, Feb 09 2017 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Indranil Ghosh, Table of n, a(n) for n = 0..3402 (terms 0..200 from T. D. Noe) Joerg Arndt, Matters Computational (The Fxtbook), pp.311-312. B. G. Baumgart, Letter to the editor Part 1 Part 2 Part 3, Fib. Quart. 2 (1964), 260, 302. Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. Index entries for linear recurrences with constant coefficients, signature (1, 1, 1, 1, 1). MAPLE A000322:=(-1+z**2+2*z**3+3*z**4)/(-1+z**2+z**3+z+z**4+z**5); # Simon Plouffe in his 1992 dissertation. a:= n-> (Matrix([[1\$5]]). Matrix(5, (i, j)-> if (i=j-1) or j=1 then 1 else 0 fi)^n)[1, 5]: seq (a(n), n=0..28); # Alois P. Heinz, Aug 26 2008 MATHEMATICA LinearRecurrence[{1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, 50] PROG (MAGMA) [ n le 5 select 1 else Self(n-1)+Self(n-2)+Self(n-3)+Self(n-4)+Self(n-5): n in [1..40] ]; (PARI) Vec((1-x^2-2*x^3-3*x^4)/(1-x-x^2-x^3-x^4-x^5)+O(x^99)) \\ Charles R Greathouse IV, Jul 01 2013 (J) (see www.jsoftware.com) First construct the generating matrix    (((+ +/), ]), :^:(1=#@\$))/&.|.<:/~i.5 1  1  1  1  1 1  2  2  2  2 2  3  4  4  4 4  6  7  8  8 8 12 14 15 16 Given that matrix, one can produce the first 2000 numbers in almost 17 millisecs by    , ((((+ +/), ]), :^:(1=#@\$))/&.|.<:/~i.5) (+/ . *)^:(i.400) 1 1 1 1 1x CROSSREFS Cf. A000045, A000288, A000383, A060455, A186192. Sequence in context: A160426 A258411 A059743 * A205539 A020737 A262452 Adjacent sequences:  A000319 A000320 A000321 * A000323 A000324 A000325 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.