|
|
A079262
|
|
Octanacci numbers: a(0)=a(1)=...=a(6)=0, a(7)=1; for n >= 8, a(n) = Sum_{i=1..8} a(n-i).
|
|
30
|
|
|
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080, 16128, 32192, 64256, 128257, 256005, 510994, 1019960, 2035872, 4063664, 8111200, 16190208, 32316160, 64504063, 128752121, 256993248, 512966536, 1023897200, 2043730736
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,10
|
|
COMMENTS
|
a(n+7) is the number of compositions of n into parts <= 8. - Joerg Arndt, Sep 24 2020
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n=0..207
Martin Burtscher, Igor Szczyrba, RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
Spiros D. Dafnis, Andreas N. Philippou, Ioannis E. Livieris, An Alternating Sum of Fibonacci and Lucas Numbers of Order k, Mathematics (2020) Vol. 9, 1487.
Taras Goy, Mark Shattuck, Some Toeplitz-Hessenberg Determinant Identities for the Tetranacci Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.6.8.
T.-X. He, Impulse Response Sequences and Construction of Number Sequence Identities, J. Int. Seq. 16 (2013) #13.8.2.
F. T. Howard and Curtis Cooper, Some identities for r-Fibonacci numbers, Fibonacci Quart. 49 (2011), no. 3, 231-243.
Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4.
Fred J. Rispoli, Fibonacci Polytopes and Their Applications, Fib. Q., 43,3 (2005), 227-233.
Kai Wang, Identities for generalized enneanacci numbers, Generalized Fibonacci Sequences (2020).
Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1,1).
|
|
FORMULA
|
G.f.: x^7/(1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8). - Emeric Deutsch, Apr 16 2005
a(1)..a(9) = 1, 1, 2, 4, 8, 16, 32, 64, 128. a(10) and following are given by 63*2^(n-8)+(1/2+sqrt(5/4))^(n-6)/sqrt(5)-(1/2-sqrt(5/4))^(n-6)/sqrt(5). Offset 10. a(10)=255. - Al Hakanson (hawkuu(AT)gmail.com), Feb 14 2009
Another form of the g.f.: f(z) = (z^7 - z^8)/(1 - 2*z + z^9), then a(n) = Sum_{i=0..floor((n-7)/9)} ((-1)^i*binomial(n-7-8*i,i)*2^(n-7-9*i) - Sum_{i=0..floor((n-8)/9)} (-1)^i*binomial(n-8-8*i,i)*2^(n-8-9*i) with Sum_{i=m..n} alpha(i) = 0 for m>n. - Richard Choulet, Feb 22 2010
Sum_{k=0..7*n} a(k+b)*A171890(n,k) = a(8*n+b), b>=0.
a(n) = 2*a(n-1) - a(n-9). - Vincenzo Librandi, Dec 20 2010
|
|
EXAMPLE
|
a(16) = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255.
|
|
MAPLE
|
for j from 0 to 6 do a[j]:=0 od: a[7]:=1: for n from 8 to 45 do a[n]:=sum(a[n-i], i=1..8) od:seq(a[n], n=0..45); # Emeric Deutsch, Apr 16 2005
|
|
MATHEMATICA
|
LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 1}, 50]] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
With[{nn=8}, LinearRecurrence[Table[1, {nn}], Join[Table[0, {nn-1}], {1}], 50]] (* Harvey P. Dale, Aug 17 2013 *)
|
|
CROSSREFS
|
Cf. A066178, A001592, A001591, A001630, A000073, A000045.
Row 8 of arrays A048887 and A092921 (k-generalized Fibonacci numbers).
Cf. A253706, A253705. Primes and indices of primes in this sequence.
Sequence in context: A145114 A172317 A234589 * A194631 A251746 A251760
Adjacent sequences: A079259 A079260 A079261 * A079263 A079264 A079265
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Michael Joseph Halm, Feb 04 2003
|
|
EXTENSIONS
|
Corrected by Joao B. Oliveira (oliveira(AT)inf.pucrs.br), Nov 25 2004
|
|
STATUS
|
approved
|
|
|
|