login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079262 Octanacci numbers: a(0)=a(1)=...=a(6)=0, a(7)=1; for n >= 8, a(n) = Sum_{i=1..8} a(n-i). 16
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080, 16128, 32192, 64256, 128257, 256005, 510994, 1019960, 2035872, 4063664, 8111200, 16190208, 32316160, 64504063, 128752121, 256993248, 512966536, 1023897200, 2043730736 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

LINKS

T. D. Noe, Table of n, a(n) for n=0..207

F. T. Howard and Curtis Cooper, Some identities for r-Fibonacci numbers.

Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4

Index to sequences with linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1,1).

FORMULA

G.f.: x^7/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8). - Emeric Deutsch, Apr 16 2005

a(1-9)=1,1,2,4,8,16,32,64,128. a(10 & following)=63*2^(n-8)+(.5+sqrt1.25)^(n-6)/sqrt5-(.5-sqrt1.25)^(n-6)/sqrt5. Offset 10. a(10)=255. [Al Hakanson (hawkuu(AT)gmail.com), Feb 14 2009]

Another form of the g.f.: f(z)=(z^7-z^8)/(1-2*z+z^9), then a(n)=sum((-1)^i*binomial(n-7-8*i,i)*2^(n-7-9*i),i=0..floor((n-7)/9))-sum((-1)^i*binomial(n-8-8*i,i)*2^(n-8-9*i),i=0..floor((n-8)/9)) with sum(alpha(i),i=m..n))=0 for m>n. [Richard Choulet, Feb 22 2010]

sum_{k=0..7*n} a(k+b)*A171890(n,k) = a(8*n+b), b>=0.

For a(0)=a(1)=..=a(6)=0, a(7)=a(8)=1, a(n)=2*a(n-1)-a(n-9). [Vincenzo Librandi, Dec 20 2010]

EXAMPLE

a(16) = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255.

MAPLE

for j from 0 to 6 do a[j]:=0 od: a[7]:=1: for n from 8 to 45 do a[n]:=sum(a[n-i], i=1..8) od:seq(a[n], n=0..45); (Deutsch)

for n from 0 to 50 do k(n):=sum((-1)^i*binomial(n-7-8*i, i)*2^(n-7-9*i), i=0..floor((n-7)/9))-sum((-1)^i*binomial(n-8-8*i, i)*2^(n-8-9*i), i=0..floor((n-8)/9)):od:seq(k(n), n=0..50); a:=taylor((z^7-z^8)/(1-2*z+z^9), z=0, 51); for p from 0 to 50 do j(p):=coeff(a, z, p):od :seq(j(p), p=0..50); # Richard Choulet, Feb 22 2010

MATHEMATICA

a=0; b=0; c=0; d=0; e=0; f=0; g=0; h=1; lst={a, b, c, d, e, f, g, h}; Do[k=a+b+c+d+e+f+g+h; AppendTo[lst, k]; a=b; b=c; c=d; d=e; e=f; f=g; g=h; h=k, {n, 4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 30 2008 *)

LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 1}, 50]] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)

With[{nn=8}, LinearRecurrence[Table[1, {nn}], Join[Table[0, {nn-1}], {1}], 50]] (* Harvey P. Dale, Aug 17 2013 *)

CROSSREFS

Cf. A066178, A001592, A001591, A001630, A000073, A000045.

Row 8 of arrays A048887 and A092921 (k-generalized Fibonacci numbers).

Sequence in context: A145114 A172317 A234589 * A194631 A251746 A251760

Adjacent sequences:  A079259 A079260 A079261 * A079263 A079264 A079265

KEYWORD

easy,nonn

AUTHOR

Michael Joseph Halm, Feb 04 2003

EXTENSIONS

Corrected by Joao B. Oliveira (oliveira(AT)inf.pucrs.br), Nov 25 2004

More terms from Emeric Deutsch, Apr 16 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 11:14 EST 2014. Contains 252355 sequences.