login
A194631
Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.
4
1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1017, 2032, 4060, 8112, 16208, 32384, 64704, 129280, 258304, 516098, 1031177, 2060318, 4116568, 8225008, 16433776, 32835104, 65605376, 131081216, 261903618, 523290119, 1045547025, 2089029664, 4173934632, 8339628016
OFFSET
1,4
COMMENTS
a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 8*p(k+1). - Joerg Arndt, Dec 18 2012
Row 7 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, row 4 being A194628, row 5 being A194629, and row 6 being A194630.
LINKS
Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964v1 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075.
FORMULA
a(n) = A294775(n-1,7). - Alois P. Heinz, Nov 08 2017
MATHEMATICA
b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
a[n_] := b[7n-6, 1, 8];
Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
PROG
(PARI) /* see A002572, set t=8 */
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Aug 30 2011
EXTENSIONS
Terms beyond a(20)=129280 added by Joerg Arndt, Dec 18 2012
STATUS
approved