login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294775 Number A(n,k) of partitions of 1 into exactly k*n+1 powers of 1/(k+1); square array A(n,k), n>=0, k>=0, read by antidiagonals. 12
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 4, 5, 1, 1, 1, 1, 2, 4, 7, 9, 1, 1, 1, 1, 2, 4, 8, 13, 16, 1, 1, 1, 1, 2, 4, 8, 15, 25, 28, 1, 1, 1, 1, 2, 4, 8, 16, 29, 48, 50, 1, 1, 1, 1, 2, 4, 8, 16, 31, 57, 92, 89, 1, 1, 1, 1, 2, 4, 8, 16, 32, 61, 112, 176, 159, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,14

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

Christian Elsholtz, Clemens Heuberger, Daniel Krenn, Algorithmic counting of nonequivalent compact Huffman codes, arXiv:1901.11343 [math.CO], 2019.

Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075.

EXAMPLE

A(4,1) = 3: [1/4,1/4,1/4,1/8,1/8], [1/2,1/8,1/8,1/8,1/8], [1/2,1/4,1/8,1/16,1/16].

A(5,2) = 7: [1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/27,1/27,1/27], [1/3,1/9,1/9,1/9,1/9,1/27,1/27,1/27,1/27,1/27,1/27], [1/3,1/9,1/9,1/9,1/9,1/9,1/27,1/27,1/81,1/81,1/81], [1/3,1/3,1/27,1/27,1/27,1/27,1/27,1/27,1/27,1/27,1/27], [1/3,1/3,1/9,1/27,1/27,1/27,1/27,1/27,1/81,1/81,1/81], [1/3,1/3,1/9,1/9,1/27,1/81,1/81,1/81,1/81,1/81,1/81], [1/3,1/3,1/9,1/9,1/27,1/27,1/81,1/81,1/243,1/243,1/243].

Square array A(n,k) begins:

  1,  1,  1,  1,  1,  1,  1,  1,  1, ...

  1,  1,  1,  1,  1,  1,  1,  1,  1, ...

  1,  1,  1,  1,  1,  1,  1,  1,  1, ...

  1,  2,  2,  2,  2,  2,  2,  2,  2, ...

  1,  3,  4,  4,  4,  4,  4,  4,  4, ...

  1,  5,  7,  8,  8,  8,  8,  8,  8, ...

  1,  9, 13, 15, 16, 16, 16, 16, 16, ...

  1, 16, 25, 29, 31, 32, 32, 32, 32, ...

  1, 28, 48, 57, 61, 63, 64, 64, 64, ...

MAPLE

b:= proc(n, r, k) option remember;

      `if`(n<r, 0, `if`(r=0, `if`(n=0, 1, 0), add(

       b(n-j, k*(r-j), k), j=0..min(n, r))))

    end:

A:= (n, k)-> `if`(k=0, 1, b(k*n+1, 1, k+1)):

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n - j, k*(r - j), k], {j, 0, Min[n, r]}]]];

A[n_, k_] := If[k == 0, 1, b[k*n + 1, 1, k + 1]];

Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-Fran├žois Alcover, Nov 11 2017, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give (offsets may differ): A000012, A002572, A176485, A176503, A194628, A194629, A194630, A194631, A194632, A194633, A295081.

Main diagonal gives A011782(n-1) for n>0.

Cf. A294746.

Sequence in context: A321744 A322763 A213211 * A330461 A332649 A321724

Adjacent sequences:  A294772 A294773 A294774 * A294776 A294777 A294778

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Nov 08 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 17:16 EDT 2020. Contains 337265 sequences. (Running on oeis4.)