OFFSET
1,4
COMMENTS
a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 10*p(k+1). [Joerg Arndt, Dec 18 2012]
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075.
FORMULA
a(n) = A294775(n-1,9).
MATHEMATICA
b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
a[n_] := b[9n-8, 1, 10];
Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
PROG
(PARI) /* see A002572, set t=10 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Aug 30 2011
EXTENSIONS
Added terms beyond a(20)=130688, Joerg Arndt, Dec 18 2012
Invalid empirical g.f. removed by Alois P. Heinz, Nov 08 2017
STATUS
approved