login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176485 First column of triangle in A176452. 10
1, 1, 1, 2, 4, 7, 13, 25, 48, 92, 176, 338, 649, 1246, 2392, 4594, 8823, 16945, 32545, 62509, 120060, 230598, 442910, 850701, 1633948, 3138339, 6027842, 11577747, 22237515, 42711863, 82037200, 157569867, 302646401, 581296715, 1116503866, 2144482948, 4118935248, 7911290530 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 3*p(k+1), see example.  [Joerg Arndt, Dec 18 2012]

Row 2 of Table 1 of Elsholtz, row 1 being A002572. - Jonathan Vos Post, Aug 30 2011

LINKS

Table of n, a(n) for n=1..38.

Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964v1 [math.CO], Aug 30, 2011.

EXAMPLE

From Joerg Arndt, Dec 18 2012: (Start)

There are a(7+1)=25 compositions 7=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 3*p(k+1):

[ 1]  [ 1 1 1 1 1 1 1 ]

[ 2]  [ 1 1 1 1 1 2 ]

[ 3]  [ 1 1 1 1 2 1 ]

[ 4]  [ 1 1 1 1 3 ]

[ 5]  [ 1 1 1 2 1 1 ]

[ 6]  [ 1 1 1 2 2 ]

[ 7]  [ 1 1 1 3 1 ]

[ 8]  [ 1 1 2 1 1 1 ]

[ 9]  [ 1 1 2 1 2 ]

[10]  [ 1 1 2 2 1 ]

[11]  [ 1 1 2 3 ]

[12]  [ 1 1 3 1 1 ]

[13]  [ 1 1 3 2 ]

[14]  [ 1 2 1 1 1 1 ]

[15]  [ 1 2 1 1 2 ]

[16]  [ 1 2 1 2 1 ]

[17]  [ 1 2 1 3 ]

[18]  [ 1 2 2 1 1 ]

[19]  [ 1 2 2 2 ]

[20]  [ 1 2 3 1 ]

[21]  [ 1 2 4 ]

[22]  [ 1 3 1 1 1 ]

[23]  [ 1 3 1 2 ]

[24]  [ 1 3 2 1 ]

[25]  [ 1 3 3 ]

(End)

PROG

(PARI)

/* g.f. as given in the Elsholtz/Heuberger/Prodinger reference */

N=66;  q='q+O('q^N);

t=3;  /* t-ary: t=2 for A002572, t=3 for A176485, t=4 for A176503  */

L=2 + 2*ceil( log(N) / log(t) );

f(k) = (1-t^k)/(1-t);

la(j) = prod(i=1, j, q^f(i) / ( 1 - q^f(i) ) );

nm=sum(j=0, L, (-1)^j * q^f(j) * la(j) );

dn=sum(j=0, L, (-1)^j * la(j) );

gf = nm / dn;

Vec( gf )

/* Joerg Arndt, Dec 27 2012 */

CROSSREFS

Cf. A176452, A002572, A176503.

Sequence in context: A018083 A108361 A082423 * A119266 A102026 A103204

Adjacent sequences:  A176482 A176483 A176484 * A176486 A176487 A176488

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 07 2010

EXTENSIONS

Extended by Jonathan Vos Post, Aug 30 2011

Added terms beyond a(20)=62509, Joerg Arndt, Dec 18 2012.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 29 06:46 EDT 2017. Contains 287243 sequences.