login
A168084
Fibonacci 13-step numbers.
5
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8191, 16381, 32760, 65516, 131024, 262032, 524032, 1048000, 2095872, 4191488, 8382464, 16763904, 33525760, 67047424, 134086657, 268156933, 536281106, 1072496696
OFFSET
1,15
LINKS
Martin Burtscher, Igor Szczyrba, RafaƂ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
Index entries for linear recurrences with constant coefficients, signature (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).
FORMULA
Another form of the g.f. f: f(z)=(z^(k-1)-z^(k))/(1-2*z+z^(k+1)) with k=13. then a(n)=sum((-1)^i*binomial(n-k+1-k*i,i)*2^(n-k+1-(k+1)*i),i=0..floor((n-k+1)/(k+1)))-sum((-1)^i*binomial(n-k-k*i,i)*2^(n-k-(k+1)*i),i=0..floor((n-k)/(k+1))) with k=13 and convention sum(alpha(i),i=m..n)=0 for m>n. - Richard Choulet, Feb 22 2010
MAPLE
k:=13:a:=taylor((z^(k-1)-z^(k))/(1-2*z+z^(k+1)), z=0, 51); for p from 0 to 50 do j(p):=coeff(a, z, p):od :seq(j(p), p=0..50); k:=13:for n from 0 to 50 do l(n):=sum((-1)^i*binomial(n-k+1-k*i, i)*2^(n-k+1-(k+1)*i), i=0..floor((n-k+1)/(k+1)))-sum((-1)^i*binomial(n-k-k*i, i)*2^(n-k-(k+1)*i), i=0..floor((n-k)/(k+1))):od:seq(l(n), n=0..50); # Richard Choulet, Feb 22 2010
MATHEMATICA
a={1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; Flatten[Prepend[Table[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s, {n, 60}], Table[0, {m, Length[a]-1}]]]
LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, 50]
With[{nn=13}, LinearRecurrence[Table[1, {nn}], Join[Table[0, {nn-1}], {1}], 50]] (* Harvey P. Dale, Aug 17 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved