login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104144 a(n) = a(n-1)+a(n-2)+a(n-3)+a(n-4)+a(n-5)+a(n-6)+a(n-7)+a(n-8)+a(n-9). 6
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144, 16272, 32512, 64960, 129792, 259328, 518145, 1035269, 2068498, 4132920, 8257696, 16499120, 32965728, 65866496, 131603200, 262947072, 525375999, 1049716729, 2097364960 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

COMMENTS

Might be called the Fibonacci 9-step numbers.

For n >= 8, this gives the number of integers written without 0 in base ten, the sum of digits of which is equal to n-7. E.g. a(11)=8 because we have the 8 numbers : 4, 13, 22, 31, 112, 121, 211, 1111.

The offset for this sequence is fairly arbitrary. - N. J. A. Sloane.

LINKS

T. D. Noe, Table of n, a(n) for n=0..208

Eric Weisstein's World of Mathematics, Fibonacci n-Step Number

FORMULA

a(n)=sum_{k=1..9} a(n-k) for n>8, a(8)=1, a(n)=0 for n=0..7.

G.f.: x^8/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9). - N. J. A. Sloane, Dec 04 2011

Another form of the g.f. f: f(z)=(z^8-z^9)/(1-2*z+z^(10)), then a(n)=sum((-1)^i*binomial(n-8-9*i,i)*2^(n-8-10*i),i=0..floor((n-8)/10))-sum((-1)^i*binomial(n-9-9*i,i)*2^(n-9-10*i),i=0..floor((n-9)/10)) with sum(alpha(i),i=m..n)=0 for m>n. [From Richard Choulet, Feb 22 2010]

Comment from N. J. A. Sloane, Dec 04 2011: (Start)

Let b be the smallest root (in magnitude) of g(x) := 1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9).

Then b = 0.50049311828655225605926845999420216157202861343888...

Let c = -b^8/g'(b) = 0.00099310812055463178382193226558248643030626601288701...

Then a(n) is the nearest integer to c/b^n. (End)

MAPLE

for n from 0 to 50 do k(n):=sum((-1)^i*binomial(n-8-9*i, i)*2^(n-8-10*i), i=0..floor((n-8)/10))-sum((-1)^i*binomial(n-9-9*i, i)*2^(n-9-10*i), i=0..floor((n-9)/10)):od:seq(k(n), n=0..50); a:=taylor((z^8-z^9)/(1-2*z+z^(10)), z=0, 51); for p from 0 to 50 do j(p):=coeff(a, z, p):od :seq(j(p), p=0..50); [From Richard Choulet, Feb 22 2010]

MATHEMATICA

a={1, 0, 0, 0, 0, 0, 0, 0, 0}; Table[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s, {n, 50}]

LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)

With[{nn=9}, LinearRecurrence[Table[1, {nn}], Join[Table[0, {nn-1}], {1}], 50]] (* Harvey P. Dale, Aug 17 2013 *)

CROSSREFS

Cf. A000045, A000073, A000078, A001591, A001592, A066178, A079262 (Fibonacci n-step numbers).

Sequence in context: A145115 A172318 A234590 * A194632 A243087 A123464

Adjacent sequences:  A104141 A104142 A104143 * A104145 A104146 A104147

KEYWORD

nonn

AUTHOR

Jean Lefort (jlefort.apmep(AT)wanadoo.fr), Mar 07 2005

EXTENSIONS

Edited by N. J. A. Sloane, Aug 15 2006 and again Nov 11 2006.

Dec 04 2011: I deleted an incorrect formula and replaced it with a correct one. - N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 24 02:09 EST 2014. Contains 249867 sequences.