|
|
A104144
|
|
a(n) = Sum_{k=1..9} a(n-k); a(8) = 1, a(n) = 0 for n < 8.
|
|
18
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144, 16272, 32512, 64960, 129792, 259328, 518145, 1035269, 2068498, 4132920, 8257696, 16499120, 32965728, 65866496, 131603200, 262947072, 525375999, 1049716729, 2097364960
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,11
|
|
COMMENTS
|
Sometimes called the Fibonacci 9-step numbers.
For n >= 8, this gives the number of integers written without 0 in base ten, the sum of digits of which is equal to n-7. E.g., a(11) = 8 because we have the 8 numbers: 4, 13, 22, 31, 112, 121, 211, 1111.
The offset for this sequence is fairly arbitrary. - N. J. A. Sloane, Feb 27 2009
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..208
Martin Burtscher, Igor Szczyrba, and RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
Taras Goy and Mark Shattuck, Some Toeplitz-Hessenberg Determinant Identities for the Tetranacci Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.6.8.
Kai Wang, Identities for generalized enneanacci numbers, Generalized Fibonacci Sequences (2020).
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number
Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1,1,1).
|
|
FORMULA
|
a(n) = Sum_{k=1..9} a(n-k) for n > 8, a(8) = 1, a(n) = 0 for n=0..7.
G.f.: x^8/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9). - N. J. A. Sloane, Dec 04 2011
Another form of the g.f. f: f(z) = (z^8-z^9)/(1-2*z+z^(10)), then a(n) = Sum_((-1)^i*binomial(n-8-9*i,i)*2^(n-8-10*i), i=0..floor((n-8)/10))-Sum_((-1)^i*binomial(n-9-9*i,i)*2^(n-9-10*i), i=0..floor((n-9)/10)) with Sum_(alpha(i), i=m..n)=0 for m>n. - Richard Choulet, Feb 22 2010
From N. J. A. Sloane, Dec 04 2011: (Start)
Let b be the smallest root (in magnitude) of g(x) := 1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9), b = 0.50049311828655225605926845999420216157202861343888...
Let c = -b^8/g'(b) = 0.00099310812055463178382193226558248643030626601288701...
Then a(n) is the nearest integer to c/b^n. (End)
|
|
MAPLE
|
for n from 0 to 50 do k(n):=sum((-1)^i*binomial(n-8-9*i, i)*2^(n-8-10*i), i=0..floor((n-8)/10))-sum((-1)^i*binomial(n-9-9*i, i)*2^(n-9-10*i), i=0..floor((n-9)/10)):od:seq(k(n), n=0..50); a:=taylor((z^8-z^9)/(1-2*z+z^(10)), z=0, 51); for p from 0 to 50 do j(p):=coeff(a, z, p):od :seq(j(p), p=0..50); # Richard Choulet, Feb 22 2010
|
|
MATHEMATICA
|
a={1, 0, 0, 0, 0, 0, 0, 0, 0}; Table[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s, {n, 50}]
LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
With[{nn=9}, LinearRecurrence[Table[1, {nn}], Join[Table[0, {nn-1}], {1}], 50]] (* Harvey P. Dale, Aug 17 2013 *)
|
|
PROG
|
(PARI) a(n)=([0, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1; 1, 1, 1, 1, 1, 1, 1, 1, 1]^n*[0; 0; 0; 0; 0; 0; 0; 0; 1])[1, 1] \\ Charles R Greathouse IV, Jun 16 2015
(PARI) A104144(n, m=9)=(matrix(m, m, i, j, j==i+1||i==m)^n)[1, m] \\ M. F. Hasler, Apr 22 2018
|
|
CROSSREFS
|
Cf. A000045, A000073, A000078, A001591, A001592, A066178, A079262 (Fibonacci n-step numbers).
Cf. A255529 (Indices of primes in this sequence).
Sequence in context: A145115 A172318 A234590 * A258800 A194632 A282584
Adjacent sequences: A104141 A104142 A104143 * A104145 A104146 A104147
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Jean Lefort (jlefort.apmep(AT)wanadoo.fr), Mar 07 2005
|
|
EXTENSIONS
|
Edited by N. J. A. Sloane, Aug 15 2006 and Nov 11 2006
Incorrect formula deleted by N. J. A. Sloane, Dec 04 2011
Name edited by M. F. Hasler, Apr 22 2018
|
|
STATUS
|
approved
|
|
|
|