This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A217274 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=7. 7
 0, 1, 7, 35, 154, 637, 2548, 9996, 38759, 149205, 571781, 2184910, 8333871, 31750824, 120875944, 459957169, 1749692735, 6654580387, 25306064602, 96226175941, 365880389868, 1391138718116, 5289228800247, 20109822277181, 76457523763621, 290689756066542 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This is the Berndt-type sequence number 18 for the argument 2*Pi/7 defined by the relation a(n)*sqrt(7) = c(4)*s(1)^(2n+1) + c(2)*s(4)^(2n+1) + c(1)*s(2)^(2n+1) = (1/s(4))*s(1)^(2n+2) + (1/s(2))*s(4)^(2n+2) + (1/s(1))*s(2)^(2n+2), where c(j) := 2*cos(2*Pi*j/7) and s(j) := 2*sin(2*Pi*j/7) (for the sums of the respective even powers see A094429). For the proof of this formula see the Witula/Slota and Witula references. The definitions of the other Berndt-type sequences for the argument 2*Pi/7 (with numbers from 1 to 17) are in the cross references. We note that all numbers of the form a(n)*7^(-floor((n+1)/3)) = A217444(n) are integers. It can be proved that Sum_{k=2..n}a(k) = 7*(a(n-1) - a(n-2)). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 R. Witula, Ramanujan type trigonometric formulas, Demonstratio Math., Vol. XLV, No. 4, 2012, pp. 789-796. Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6. Index entries for linear recurrences with constant coefficients, signature (7,-14,7). FORMULA G.f.: x/(1-7*x+14*x^2-7*x^3). EXAMPLE Writing c(j) as cj and s(k) as sk, we have 7*sqrt(7) = c4*s1^5 + c2*s4^5 + c1*s2^5 and c4*s1^13 + c2*s4^13 + c1*s2^13 = 4(c4*s1^11 + c2*s4^11 + c1*s2^11). We note that a(9) = 87*a(3)*a(2)^2 and a(11) = 2*a(3)*a(5)*a(2)^2. MATHEMATICA LinearRecurrence[{7, -14, 7}, {0, 1, 7}, 30] CoefficientList[Series[x/(1 - 7*x + 14*x^2 - 7*x^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 16 2017 *) PROG (Maxima) a[0]:0\$ a[1]:1\$ a[2]:7\$ a[n]:=7*a[n-1] - 14*a[n-2] + 7*a[n-3]; makelist(a[n], n, 0, 25); /* Martin Ettl, Oct 11 2012 */ (PARI) concat(0, Vec(x/(1-7*x+14*x^2-7*x^3) + O(x^40))) \\ Michel Marcus, Jul 25 2015 (MAGMA) I:=[0, 1, 7]; [n le 3 select I[n] else 7*Self(n-1)-14*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 26 2015 CROSSREFS Cf. A033304, A094429, A094430, A094648, A108716, A215007, A215008, A215143, A215493, A215494, A215510, A215512, A215575, A215694, A215695, A215794, A215817, A215828, A215877, A217444. Sequence in context: A240423 A094825 A022635 * A000588 A005285 A006095 Adjacent sequences:  A217271 A217272 A217273 * A217275 A217276 A217277 KEYWORD nonn,easy AUTHOR Roman Witula, Sep 29 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 14:44 EST 2019. Contains 329806 sequences. (Running on oeis4.)