login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215877 a(n) = (A(n) - A215817(n))/sqrt(7), where A(n) = (6-sqrt(7))A(n-1) - (12-4*sqrt(7))A(n-2) + (8-3*sqrt(7))A(n-3), with A(0)=3, A(1)=6-sqrt(7), and A(2)=19-4*sqrt(7). 7
0, -1, -4, -16, -64, -254, -1000, -3913, -15248, -59263, -229996, -892033, -3459544, -13421784, -52104416, -202436819, -787231328, -3064347392, -11940020992, -46569416006, -181808493296, -710442293743, -2778591945620, -10876271461745, -42606078512048 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The Berndt-type sequence number 15 for the argument 2Pi/7 defined by requiring sqrt(7)*a(n) to be the irrational part of the trigonometric sum A(n) := c(1)^(2*n) + c(2)^(2*n) + c(4)^(2*n), where c(j) := 2*cos(Pi/4 + 2*Pi*j/7) = 2*cos((7+8*j)*Pi/28).

We note that A(n)-sqrt(7)*a(n)= A215817(n). For more facts on A(n) - see comments to A215817.

LINKS

Table of n, a(n) for n=0..24.

Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6

Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5

FORMULA

sqrt(7)*a(n) = to the irrational part of c(1)^(2*n) + c(2)^(2*n) + c(4)^(2*n) = (1-s(1))^n + (1-s(2))^n + (1-s(4))^n, where c(j) = 2*cos((7+8*j)*Pi/28) and s(j) := sin(2*Pi*j/7).

Empirical g.f.: -x * (2*x-1)^2 * (x^2-4*x+1) / (x^6 -24*x^5 +86*x^4 -104*x^3 +53*x^2 -12*x +1). - Colin Barker, Jun 01 2013

EXAMPLE

We have a(2)/a(1) = a(3)/a(2) = a(4)/a(3) = 4, but a(5)-4*a(4)=2 and a(6)=4*(a(5)-a(2)). Moreover it follows

the relations: 4*A(1)-A(2) = 5 = (3+s(1))*(1-s(1)) + (3+s(2))*(1-s(2)) + (3+s(4))*(1-s(4)), 4*A(2)-A(3) = 10 =  (3+s(1))*(1-s(1))^2 + (3+s(2))*(1-s(2))^2 + (3+s(4))*(1-s(4))^2, 4*A(3)-A(4) = 27 = (3+s(1))*(1-s(1))^3 + (3+s(2))*(1-s(2))^3 + (3+s(4))*(1-s(4))^3, whereas 4*A(4)-a(5) = 82-2*sqrt(7) = (3+s(1))*(1-s(1))^4 + (3+s(2))*(1-s(2))^4 + (3+s(4))*(1-s(4))^4.

CROSSREFS

Cf. A215493, A215494, A215143, A215510, A094429, A215817.

Sequence in context: A005755 A269651 A077821 * A206450 A294452 A270142

Adjacent sequences:  A215874 A215875 A215876 * A215878 A215879 A215880

KEYWORD

sign

AUTHOR

Roman Witula, Aug 25 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 21:28 EST 2019. Contains 329937 sequences. (Running on oeis4.)