login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094429 Given the 3 X 3 matrix M = [0 1 0 / 0 0 1 / 7 -14 7], a(n) = (-) rightmost term of M^n * [1 1 1]. 10
0, 7, 42, 196, 833, 3381, 13377, 52136, 201341, 773122, 2958032, 11291903, 43042727, 163918671, 623875840, 2373568575, 9028148962, 34334213564, 130560389505, 496440779373, 1887579497489, 7176808297736, 27286630574917 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

M is derived from the Lucas polynomial: x^3 - 7*x^2 + 14*x - 7 with a root (and eigenvalue of the matrix): 3.801377358... = (2*sin(3*Pi/7))^2, the convergent of the sequence.

From Roman Witula, Sep 29 2012: (Start)

The Berndt-type sequence number 16 for the argument 2*Pi/7 (see Formula section and Crossrefs for other Berndt-type sequences for the argument 2*Pi/7 - for numbers from 1 to 18 without 16).

Note that all numbers of the form a(n)*7^(-1 - floor((n-1)/3)) are integers and even a(10) and a(11) are divisible by 7^5. (End)

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1700

Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6.

Index entries for linear recurrences with constant coefficients, signature (7,-14,7).

FORMULA

From Colin Barker, Jun 19 2012: (Start)

a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3).

G.f.: 7*x^2*(1-x)/(1 - 7*x + 14*x^2 - 7*x^3). (End)

a(n) = c(4)*(s(1))^(2*n) + c(2)*(s(4))^(2*n) + c(1)*(s(2))^(2*n) = (-1/sqrt(7))*(c(1)*(s(1))^(2*n+3) + c(2)*(s(2))^(2*n+3) + c(3)*(s(3))^(2*n+3)) = (-1/sqrt(7))*(s(2)*(s(1))^(2*n+2) + s(4)*(s(2))^(2*n+2) + s(1)*(s(4))^(2*n+2)), where c(j) := 2*cos(2*Pi*j/7) and s(j) := 2*sin(2*Pi*j/7) (for the sums of the respective odd powers see A217274, see also A215493 and comments to A215494). For the proof of these formulas see Witula-Slota's paper. - Roman Witula, Jul 24 2012

EXAMPLE

a(5) = 833. M^5 * [1 1 1] = [ -42 -196 -833].

We have 4*a(4) - a(5) = 4*a(5) - a(6) = 7*a(2) = 49, 88*a(10) = 23*a(11), and a(3) = 6*a(2), which implies the equalities c(4)*(s(1))^6 + c(2)*(s(4))^6 + c(1)*(s(2))^6 = 6*(c(4)*(s(1))^4 + c(2)*(s(4))^4 + c(1)*(s(2))^4) and

s(2)*(s(1))^8 + s(4)*(s(2))^8 + s(1)*(s(4))^8 = 6*( s(2)*(s(1))^6 + s(4)*(s(2))^6 + s(1)*(s(4))^6). - Roman Witula, Sep 29 2012

MATHEMATICA

Table[(MatrixPower[{{0, 1, 0}, {0, 0, 1}, {7, -14, 7}}, n].{-1, -1, -1})[[3]], {n, 23}] (* Robert G. Wilson v, May 08 2004 *)

LinearRecurrence[{7, -14, 7}, {0, 7, 42}, 50] (* Roman Witula, Aug 13 2012 *)

PROG

(PARI) x='x+O('x^30); concat([0], Vec(7*x^2*(1-x)/(1-7*x+14*x^2-7*x^3))) \\ G. C. Greubel, May 09 2018

(PARI) a(n) = -(([0, 1, 0; 0, 0, 1; 7, -14, 7]^n)*[1, 1, 1]~)[3]; \\ Michel Marcus, May 10 2018

(MAGMA) I:=[0, 7, 42]; [n le 3 select I[n] else 7*Self(n-1) -14*Self(n-2) +7*Self(n-3): n in [1..30]]; // G. C. Greubel, May 09 2018

CROSSREFS

Cf. A215007, A215008, A215143, A215493, A215494, A215510, A215512, A215575, A215694, A215695, A108716, A215794, A215828, A215817, A215877, A094430, A217274.

Sequence in context: A057425 A248329 A073376 * A246434 A255614 A022731

Adjacent sequences:  A094426 A094427 A094428 * A094430 A094431 A094432

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson, May 02 2004

EXTENSIONS

More terms from Robert G. Wilson v, May 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 02:24 EST 2019. Contains 329910 sequences. (Running on oeis4.)