This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215695 a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3) with a(0)=1, a(1)=0, a(2)=-2. 10
 1, 0, -2, -9, -33, -113, -376, -1235, -4032, -13126, -42673, -138641, -450293, -1462292, -4748343, -15418256, -50063514, -162556377, -527819057, -1713820537, -5564744720, -18068619435, -58668449392, -190495275070, -618534298433, -2008368291137, -6521130940157, -21173979252396, -68751478912175, -223234649986656, -724838355712626 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The Berndt-type sequence number 10 for the argument 2Pi/7 defined by the first trigonometric relation from section "Formula". For additional informations and particularly connections with another sequences of trigonometric nature - see comments to A215512 (a(n) is equal to the sequence c(n) in these comments) and Witula-Slota's reference (Section 3). The following summation formula hold true (see comments to A215512): Sum{k=3,..,n} a(k) = 5*a(n-1) - a(n-2) + 1, n=3,4,... LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6 Index entries for linear recurrences with constant coefficients, signature (5,-6,1). FORMULA sqrt(7)*a(n) = s(1)*c(1)^(2*n) + s(2)*c(2)^(2*n) + s(4)*c(4)^(2*n), where c(j):=2*cos(2*Pi*j/7) and s(j):=2*sin(2*Pi*j/7). G.f.: (1-5*x+4*x^2)/(1-5*x+6*x^2-x^3). a(n) = A005021(n) - 5*A005021(n-1) + 4*A005021(n-2). - R. J. Mathar, Aug 22 2012 EXAMPLE We have a(8)=3*a(7)+3*a(5)-6*a(2) and a(9)=3*a(8)+3*a(6)-3*a(4)-a(1). MATHEMATICA LinearRecurrence[{5, -6, 1}, {1, 0, -2}, 50] PROG (PARI) x='x+O('x^30); Vec((1-5*x+4*x^2)/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 25 2018 (MAGMA) I:=[1, 0, -2]; [n le 3 select I[n] else 5*Self(n-1) - 6*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 25 2018 CROSSREFS Cf. A215512 (the inverse binomial transform, up to signs), A215694. Sequence in context: A122097 A073400 A048498 * A289600 A202206 A150921 Adjacent sequences:  A215692 A215693 A215694 * A215696 A215697 A215698 KEYWORD sign,easy AUTHOR Roman Witula, Aug 21 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)