login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215008 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0)=0, a(1)=1, a(2)=5. 19
0, 1, 5, 21, 84, 329, 1274, 4900, 18767, 71687, 273371, 1041348, 3964051, 15083082, 57374296, 218205281, 829778397, 3155194917, 11996903828, 45614046737, 173428037986, 659377938380, 2506951364015, 9531364676687 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The Berndt-type sequence number 2 for argument 2Pi/7 is defined by the following relation: a(n) = -(2^(2n-1)/sqrt(7))*(((s(1))^2n/s(2)) + ((s(4))^2n/s(1)) + ((s(2))^2n/s(4))), where s(j) := sin(2Pi*j/7) - see also sequence A215007. This sequence was motivated by Berndt's et al. papers.

We note that a(n)=A002054(n) for n=0,1,...,4, and A002054(5)-a(5)=1. Moreover, we have a(n+1)=A026027(n) for n=0,...,6, and A026027(7)-a(8)=1. The characteristic polynomial of a(n) has the form x^3-7*x^2+14*x-7 = (x-(2*s(1))^2)*(x-(2*s(2))^2)*(x-(2*s(4))^2) and was known to Johannes Kepler (1571-1630) - see Witula's book and Savio-Suryanarayan's paper.

REFERENCES

R. Witula, Complex numbers, Polynomials and Fractial Partial Decompositions, T.3, Silesian Technical University Press, Gliwice 2010 (in Polish).

R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

B. C. Berndt, A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.

B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.

Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130.

D. Y. Savio and E. R. Suryanarayan, Chebyshev Polynomials and Regular Polygons, Amer. Math. Monthly, 100 (1993), 657-661.

Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.

R. Wituła, P. Lorenc, M. Różański, M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, 2014.

Index entries for linear recurrences with constant coefficients, signature (7, -14, 7).

FORMULA

G.f.: (x-2*x^2)/(1-7*x+14*x^2-7*x^3).

a(n+1) - 2*a(n) = (1/sqrt(7))*Sum_{k=0,1,2} cot(2^k * alpha) * (2*sin(2^k * alpha))^(2n), where alpha = 2*Pi/7. - Roman Witula, May 16 2014

EXAMPLE

We have a(6)<a(8), but the following amazing equality holds:

  ((s(1))^6/s(2)) + ((s(4))^6/s(1)) + ((s(2))^6/s(4))) = ((s(1))^8/s(2)) + ((s(4))^8/s(1)) + ((s(2))^8/s(4))) = -21*sqrt(7)/32.

It can be also proved that

  ((s(1))^3/s(2)) + ((s(4))^3/s(1)) + ((s(2))^3/s(4))) = ((s(1))^5/s(2)) + ((s(4))^5/s(1)) + ((s(2))^5/s(4))) = ((s(1))^7/s(2)) + ((s(4))^7/s(1)) + ((s(2))^7/s(4))).

MATHEMATICA

LinearRecurrence[{7, -14, 7}, {0, 1, 5}, 40]

PROG

(PARI) Vec((x-2*x^2)/(1-7*x+14*x^2-7*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

(MAGMA) I:=[0, 1, 5]; [n le 3 select I[n] else 7*Self(n-1) - 14*Self(n-2) + 7*Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 01 2018

CROSSREFS

Cf. A215007.

Sequence in context: A083319 A146041 A146585 * A026027 A002054 A289797

Adjacent sequences:  A215005 A215006 A215007 * A215009 A215010 A215011

KEYWORD

nonn,easy

AUTHOR

Roman Witula, Jul 31 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 20:45 EST 2019. Contains 320189 sequences. (Running on oeis4.)