login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215493 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=4. 17
0, 1, 4, 14, 49, 175, 637, 2352, 8771, 32928, 124166, 469567, 1779141, 6749211, 25623472, 97329337, 369821228, 1405502182, 5342323441, 20307982135, 77201862045, 293497548512, 1115812645899, 4242135876440, 16128056932078, 61317184775679, 233122447515741 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The Berndt-type sequence number 4 for the argument 2Pi/7 - see also A215007, A215008, A215143 and A215494.

We have a(n)=A079309(n) for n=1..6, and A079309(7)-a(7)=1.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

B. C. Berndt, A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.

B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.

Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130.

Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6

Index entries for linear recurrences with constant coefficients, signature (7,-14,7).

FORMULA

a(n)*sqrt(7) = s(1)^(2n-1) + s(2)^(2n-1) + s(4)^(2n-1), where s(j) := 2*Sin(2*Pi*j/7) (for the sums of the respective even powers see A215494, see also A094429, A115146). For the proof of these formula see Witula-Slota's paper.

G.f.: x*(1-3*x)/(1-7*x+14*x^2-7*x^3).

a(n) = A275830(2*n-1)/(7^n). - Kai Wang, May 25 2017

MATHEMATICA

LinearRecurrence[{7, -14, 7}, {0, 1, 4}, 50]

PROG

(PARI) x='x+O('x^30); concat([0], Vec(x*(1-3*x)/(1-7*x+14*x^2-7*x^3))) \\ G. C. Greubel, Apr 23 2018

(MAGMA) I:=[0, 1, 4]; [n le 3 select I[n] else 7*Self(n-1) - 14*Self(n-2) +7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 23 2018

CROSSREFS

Sequence in context: A316974 A278026 A001894 * A079309 A026630 A034459

Adjacent sequences:  A215490 A215491 A215492 * A215494 A215495 A215496

KEYWORD

nonn,easy

AUTHOR

Roman Witula, Aug 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 22:55 EST 2019. Contains 329974 sequences. (Running on oeis4.)