login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217444 a(n) = A(n)*7^(-floor(n+1)/3), where A(n) = 7*A(n-1) - 14*A(n-2) + 7*A(n-3) with A(0)=0, A(1)=1, A(2)=7. 3
0, 1, 1, 5, 22, 13, 52, 204, 113, 435, 1667, 910, 3471, 13224, 7192, 27367, 104105, 56563, 215098, 817909, 444276, 1689212, 6422529, 3488381, 13262821, 50424942, 27387681, 104126704, 395884336, 215018609, 817488295, 3108041875, 1688083894, 6417991803, 24400809980 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The Berndt-type sequence number 18a for the argument 2Pi/7, which is closely connected with the sequence A217274. Definitions other Berndt-type sequences for the argument 2Pi/7 like A215575, A215877, A033304 in sequences from Crossrefs are given.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,10,0,0,-17,0,0,1).

FORMULA

G.f.: x*(1+x+5*x^2+12*x^3+3*x^4+2*x^5+x^6)/(1-10*x^3+17*x^6-x^9). - Bruno Berselli, Oct 03 2012

a(n) = 10*a(n-3) - 17*a(n-6) + a(n-9). - G. C. Greubel, Apr 23 2018

MATHEMATICA

CoefficientList[Series[x*(1+x+5*x^2+12*x^3+3*x^4+2*x^5+x^6)/(1 - 10*x^3 + 17*x^6 - x^9), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 15 2012 *)

LinearRecurrence[{0, 0, 10, 0, 0, -17, 0, 0, 1}, {0, 1, 1, 5, 22, 13, 52, 204, 113}, 50] (* G. C. Greubel, Apr 23 2018 *)

PROG

(MAGMA) i:=35; I:=[0, 1, 7]; A:=[m le 3 select I[m] else 7*Self(m-1)-14*Self(m-2)+7*Self(m-3): m in [1..i]]; [7^(-Floor(n/3))*A[n]: n in [1..i]]; // Bruno Berselli, Oct 03 2012

(PARI) x='x+O('x^30); concat([0], Vec(x*(1+x+5*x^2+12*x^3+3*x^4 +2*x^5 +x^6)/(1- 10*x^3+17*x^6-x^9))) \\ G. C. Greubel, Apr 23 2018

CROSSREFS

Cf. A215007, A215008, A215143, A215493, A215494, A215510, A215512, A215575, A215694, A215695, A108716, A215794, A215828, A215817, A215877, A094429, A094430, A217274, A094648, A033304.

Sequence in context: A247937 A270406 A209049 * A063619 A229801 A045015

Adjacent sequences:  A217441 A217442 A217443 * A217445 A217446 A217447

KEYWORD

nonn,easy

AUTHOR

Roman Witula, Oct 03 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 16:47 EDT 2019. Contains 323533 sequences. (Running on oeis4.)