
REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 238.


LINKS

Table of n, a(n) for n=1..27.
J. R. Bitner and E. M. Reingold, Backtrack programming techniques, Commun. ACM, 18 (1975), 651656. [Annotated scanned copy]
J. R. Bitner and E. M. Reingold, Backtrack programming techniques, Commun. ACM, 18 (1975), 651656.
P. Capstick and K. McCann, The problem of the n queens, apparently unpublished, no date (circa 1990?) [Scanned copy]
V. Chvatal, All solutions to the problem of eight queens
V. Chvatal, All solutions to the problem of eight queens [Cached copy, pdf format, with permission]
Popular Computing (Calabasas, CA), 8 Queens, Vol. 2, No. 13, Apr 1974, page PC131. Illustrates a(8)=12.
Popular Computing (Calabasas, CA), 8 Queens, Vol. 2, No. 13, Apr 1974, page PC132.
Popular Computing (Calabasas, CA), 8 Queens, Vol. 2, No. 13, Apr 1974, page PC133.
Popular Computing (Calabasas, CA), 8 Queens, Vol. 2, No. 13, Apr 1974, page PC134.
Thomas Preusser, Queens%40TUDProject
E. M. Reingold, Letter to N. J. A. Sloane, Dec 27 1973
M. A. SainteLaguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, GauthierVillars, Paris, 1923, 64 pages. See p. 47.
M. A. SainteLaguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, GauthierVillars, Paris, 1923, 64 pages. See p. 47. [Incomplete annotated scan of title page and pages 1851]
Eric Weisstein's World of Mathematics, Queens Problem.
M. B. Wells, Elements of Combinatorial Computing, Pergamon, Oxford, 1971. [Annotated scanned copy of pages 237240]
