login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219788 Consider the succession rule (x, y, z) -> (z, y+z, x+y+z). Sequence gives z values starting at (0, 1, 2). 0
2, 3, 8, 17, 39, 87, 196, 440, 989, 2222, 4993, 11219, 25209, 56644, 127278, 285991, 642616, 1443945, 3244515, 7290359, 16381288, 36808420, 82707769, 185842670, 417584689, 938304279, 2108350577, 4737420744, 10644887786, 23918845739, 53745158520, 120764274993 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The rule can be generalized for any number of starting terms s: (xs, ..., x2, x1) -> (x1, x1 + x2, ..., x1 + x2 + ... + xs), using (0, 1, ..., s-1) as seed values. This sequence is s=3, and s=2 yields the Fibonacci series.

For s=3 the ratio of S1 (the first in the sub-series) to S3 (the 3rd in the sub-series) converges on 2.2469796 and the ration of S2 (the 2nd in the sub-series) to S3 converges on 1.2469796 thus the difference, S2-S3, converges on 1 regardless of the seed values used.

For s=20 the series is: 19, 190, 2660, 33915, 445949, ....

a(n-2) is the top left entry of the n-th power of the 3 X 3 matrix [0, 1, 1; 1, 1, 1; 1, 0, 1] or of the 3 X 3 matrix [0, 1, 1; 1, 1, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014

From Andrew Pharo, Jun 02 2014 (Start):

For s=2 the ratio of successive terms is 1.6180339887.. or phi (or phi(2)),

For s=3 this ratio is 2.24697960412319.., phi(3) = 4*cos(pi/7)^2-1 (see Falbo link),

For s=4 this ratio is 3.5133370918694..,

For s=20 this ratio is 13.0538985560545... and so on.

We can define a function phi(s) which approximates to:

phi(s) ~ phi(2) + theta*(s-2)  where theta ~ 0.636264133.

(End)

LINKS

Table of n, a(n) for n=1..32.

Clement Falbo, The Golden Ratio - A Contrary Viewpoint, Vol. 36, No. 2, March 2005, The College Mathematics Journal.

Y-h. Guo, Some n-Color Compositions, J. Int. Seq. 15 (2012) 12.1.2, eq. (10) and Theorem 8.

R. Sachdeva and A. K. Agarwal, Combinatorics of certain restricted n-color composition functions, Discrete Mathematics, 340, (2017), 361-372.

Index entries for linear recurrences with constant coefficients, signature (2,1,-1).

FORMULA

a(n) = 2a(n-1) + a(n-2) - a(n-3). - Charles R Greathouse IV, Nov 28 2012

The essentially identical sequence 1,0,2,3,8,17,39,... with offset 0 is defined by a(n) = 2a(n-1) + a(n-2) - a(n-3) with initial terms a(0)=1, a(1)=0, a(2)=2. - N. J. A. Sloane, Jan 16 2017

G.f.: -x*(-2+x) / ( 1-2*x-x^2+x^3 ). - R. J. Mathar, Feb 03 2014

a(n) = 2*A006054(n+1)-A006054(n). - R. J. Mathar, Aug 22 2016

EXAMPLE

The seed values are (0,1,2), giving a(1) = 2. (2, 2+1, 2+1+0) is the next triple, giving a(2) = 2+1+0 = 3. (3, 6, 8) is next, yielding a(3) = 8. Following triples are (8,14,17), (17,31,39), etc.

PROG

(PARI) first(n)=my(x=0, y=1, z=2, v=List([z])); for(i=2, n, [x, y, z]=[z, y+z, x+y+z]; listput(v, c)); Vec(v) \\ Charles R Greathouse IV, Nov 28 2012

CROSSREFS

Sequence in context: A182889 A256169 A298405 * A099965 A319566 A294450

Adjacent sequences:  A219785 A219786 A219787 * A219789 A219790 A219791

KEYWORD

nonn,easy

AUTHOR

Andrew Pharo, Nov 27 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 14:54 EST 2019. Contains 329337 sequences. (Running on oeis4.)