

A033950


Refactorable numbers: number of divisors of n divides n. Also known as tau numbers.


123



1, 2, 8, 9, 12, 18, 24, 36, 40, 56, 60, 72, 80, 84, 88, 96, 104, 108, 128, 132, 136, 152, 156, 180, 184, 204, 225, 228, 232, 240, 248, 252, 276, 288, 296, 328, 344, 348, 360, 372, 376, 384, 396, 424, 441, 444, 448, 450, 468, 472, 480, 488, 492, 504, 516, 536
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Kennedy and Cooper show that this sequence has density zero.
Spiro showed more precisely that the number of refactorable numbers less than x is asymptotic to (x/sqrt(log x))(log(log x))^(1+o(1)).  David Eppstein, Aug 25 2014
Numbers n such that the equation GCD(n,x)=tau(n) has solutions.  Benoit Cloitre, Jun 10 2002
Refactorable numbers are the fixed points of A009230.  Labos Elemer, Nov 18 2002
Let ref(n) denote the characteristic function of the refactorable numbers. Then ref(n) = 1 + floor(n/d(n))  ceil(n/d(n)), where d(n) is the number of divisors of n.  Wesley Ivan Hurt, Jan 09 2013, Feb 15 2013
An odd number with an even number of divisors cannot be in the sequence by definition. Therefore all odd terms are squares (A000290).  Ivan N. Ianakiev, Aug 25 2013
A054008(n) = n mod A000005(n).  Reinhard Zumkeller, Sep 17 2014
The only squarefree terms are 1 and 2: if x is a squarefree number that is a product of n distinct primes, its number of divisors is 2^n, so x is refactorable if it contains 2^n as a factor, but that makes it nonsquarefree unless n = 0, 1, hence x = 1, 2.  Waldemar Puszkarz, Jun 10 2016
Every positive integer occurs as tau(n) for some n in the sequence. If the factorization of n is Product p_i^k_i, then Product p_i^(p_i^k_i1) has the specified property. For n prime, this is the only such number.  Franklin T. AdamsWatters, Jan 14 2017


REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, B12.
New Scientist, Sep 05 1998, p. 17, para. 3.


LINKS

T. D. Noe and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
A. Bundy, Simon Colton, T. Walsh, HR  A system for Machine Discovery in Finite Algebras, ECAI 1998.
S. Colton, Refactorable Numbers  A Machine Invention, J. Integer Sequences, Vol. 2, 1999, #2.
S. Colton, HR  Automatic Theory Formation in Pure Mathematics
Robert E. Kennedy and Curtis N. Cooper, Tau numbers, natural density and Hardy and Wright's Theorem 437, International Journal of Mathematics and Mathematical Sciences, 13:2 (1990), pp. 383386.
Claudia Spiro, How often is the number of divisors of n a divisor of n?, J. Number Theory 21 (1985), no. 1, 81100.
Joshua Zelinsky, Tau Numbers: A Partial Proof of a Conjecture and Other Results , Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.8


MAPLE

with(numtheory):
A033950 := proc(n)
option remember:
local k:
if n=1 then
return 1:
else
for k from procname(n1)+1 do
if type(k/tau(k), integer) then
return k:
end if:
end do:
end if:
end proc:
seq(A033950(n), n=1..56); # Nathaniel Johnston, May 04 2011


MATHEMATICA

Do[If[IntegerQ[n/DivisorSigma[0, n]], Print[n]], {n, 1, 1000}]
Select[ Range[559], Mod[ #, DivisorSigma[0, # ]] == 0 &]
Select[Range[550], Divisible[ #, DivisorSigma[0, # ]]&] (* Waldemar Puszkarz, Jun 10 2016 *)


PROG

(MAGMA) [ n: n in [1..540]  n mod #Divisors(n) eq 0 ]; // Klaus Brockhaus, Apr 29 2009
(PARI) isA033950(n)=n%numdiv(n)==0 \\ Charles R Greathouse IV, Jun 10 2011
(Haskell)
a033950 n = a033950_list !! (n1)
a033950_list = [x  x < [1..], x `mod` a000005 x == 0]
 Reinhard Zumkeller, Dec 28 2011
(Python)
from sympy import divisor_count
print [n for n in xrange(1, 1001) if n%divisor_count(n)==0] # Indranil Ghosh, May 03 2017


CROSSREFS

Cf. A000005, A039819, A036762, A051278, A051279, A051280, A036763.
Cf. A235353 (subsequence).
Cf. A054008, A281188.
Sequence in context: A086678 A066550 A162952 * A046526 A279373 A057529
Adjacent sequences: A033947 A033948 A033949 * A033951 A033952 A033953


KEYWORD

nonn,nice


AUTHOR

Simon Colton (simonco(AT)cs.york.ac.uk)


EXTENSIONS

More terms from Erich Friedman


STATUS

approved



