login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033950 Refactorable numbers: number of divisors of n divides n. Also known as tau numbers. 95
1, 2, 8, 9, 12, 18, 24, 36, 40, 56, 60, 72, 80, 84, 88, 96, 104, 108, 128, 132, 136, 152, 156, 180, 184, 204, 225, 228, 232, 240, 248, 252, 276, 288, 296, 328, 344, 348, 360, 372, 376, 384, 396, 424, 441, 444, 448, 450, 468, 472, 480, 488, 492, 504, 516, 536 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Kennedy and Cooper show that this sequence has density zero.

Numbers n such that the equation gcd(n,x)=tau(n) has solutions - Benoit Cloitre, Jun 10 2002

Refactorable numbers are the fixed points of A009230. - Labos Elemer, Nov 18 2002

Let ref(n) denote the characteristic function of the refactorable numbers.  Then ref(n) = 1 + floor(n/d(n)) - ceil(n/d(n)), where d(n) is the number of divisors of n. - Wesley Ivan Hurt, Jan 09 2013, Feb 15 2013

An odd number with an even number of divisors cannot be in the sequence by definition. Therefore all odd terms are squares (A000290). - Ivan N. Ianakiev, Aug 25 2013

REFERENCES

Colton, S., Bundy, A. and Walsh, T. R. S., HR - A system for machine discovery in finite algebras, ECAI 98, forthcoming.

R. K. Guy, Unsolved Problems in Number Theory, B12.

New Scientist, 5th Sept. 1998, p. 17, para. 3.

LINKS

T. D. Noe and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)

A. Bundy, Simon Colton, T. Walsh, HR- A system for Machine Discovery in Finite Algebras, ECAI 1998.

S. Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2, 1999, #2.

S. Colton, HR - Automatic Theory Formation in Pure Mathematics

Robert E. Kennedy and Curtis N. Cooper, Tau numbers, natural density and Hardy and Wright's Theorem 437, International Journal of Mathematics and Mathematical Sciences, 13:2 (1990), pp. 383-386.

Joshua Zelinsky, Tau Numbers: A Partial Proof of a Conjecture and Other Results , Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.8

MAPLE

with(numtheory): A033950 := proc(n) option remember: local k: if(n=1)then return 1: else k:=procname(n-1)+1: do if(type(k/tau(k), integer))then return k: fi: k:=k+1: od: fi: end: seq(A033950(n), n=1..56); # Nathaniel Johnston, May 04 2011

MATHEMATICA

Do[If[IntegerQ[n/DivisorSigma[0, n]], Print[n]], {n, 1, 1000}]

Select[ Range[559], Mod[ #, DivisorSigma[0, # ]] == 0 &]

PROG

(MAGMA) [ n: n in [1..540] | n mod #Divisors(n) eq 0 ]; // Klaus Brockhaus, Apr 29 2009

(PARI) isA033950(n)=n%numdiv(n)==0 \\ Charles R Greathouse IV, Jun 10 2011

(Haskell)

a033950 n = a033950_list !! (n-1)

a033950_list = [x | x <- [1..], x `mod` a000005 x == 0]

-- Reinhard Zumkeller, Dec 28 2011

CROSSREFS

Cf. A000005, A039819, A036762, A051278, A051279, A051280, A036763.

Cf. A235353 (subsequence).

Sequence in context: A086678 A066550 A162952 * A046526 A057529 A120737

Adjacent sequences:  A033947 A033948 A033949 * A033951 A033952 A033953

KEYWORD

nonn,nice

AUTHOR

Simon Colton (simonco(AT)cs.york.ac.uk)

EXTENSIONS

More terms from Erich Friedman

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 25 05:59 EDT 2014. Contains 244900 sequences.