This site is supported by donations to The OEIS Foundation.

CiteCa

From OeisWiki

Jump to: navigation, search


Contents

CiteCa

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • This section lists works in which the first author's name begins with Ca to Ch.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.

References

  1. A. Cabello, L. E. Danielsen, A. J. Lopez-Tarrida and J. R. Portillo, Basic logical structures in quantum correlations, arXiv preprint arXiv:1211.5825, 2012
  2. A. Cabello, M. G. Parker, G. Scarpa and S. Severini, Exclusive disjunction structures and graph representatives of local complementation orbits, arXiv preprint arXiv:1211.4250, 2012
  3. Cabello, A.; Parker, M. G.; Scarpa, G.; Severini, S. (2013). "Exclusivity structures and graph representatives of local complementation orbits". 
  4. Isabel Cação, Maria Irene Falcão, Helmuth Malonek, Hypercomplex Polynomials, Vietoris' Rational Numbers and a Related Integer Numbers Sequence, Complex Analysis and Operator Theory, June 2017, Volume 11, Issue 5, pp. 1059–1076. doi:10.1007/s11785-017-0649-5
  5. Freddy Cachazo, Humberto Gomez, Computation of Contour Integrals on M_{0,n}, preprint arXiv:1505.03571, 2015. (A001171)
  6. F. Cachazo, S. He, E. Y. Yuan, Scattering in Three Dimensions from Rational Maps, arXiv preprint arXiv:1306.2962, 2013
  7. V. Cacic and V. Kovacs, On the share [fraction] of IL formulas that have normal forms, arXiv preprint arXiv:1309.3408, 2013
  8. V. Cacic, V. Kovac, On the share of closed IL formulas which are also in GL, Archive for Mathematical Logic, Online Jun 23 2015; doi:10.1007/s00153-015-0438-7.
  9. C. Cafaro, D. Markham, P. van Loock, Scheme for constructing graphs associated with stabilizer quantum codes, arXiv preprint arXiv:1407.2777, 2014
  10. Andrea Caggegi, Alfonso Di Bartolo, Giovanni Falcone, Boolean 2-designs and the embedding of a 2-design in a group (2008); arXiv:0806.3433
  11. Libor Caha, Quantum 2-SAT in 1D geometry, Master's Thesis, MASARYK UNIVERSITY, FACULTY OF INFORMATICS, Brno, Autumn 2011; http://is.muni.cz/th/172519/fi_m/text.pdf
  12. Paul-Jean Cahen, JL Chabert, What You Should Know About Integer-Valued Polynomials, The American Mathematical Monthly, 123 (No. 4, 2016), 311-337.
  13. T. Cai, Z. Shen, L. Jia, A congruence involving harmonic sums modulo p^alpha q^beta, arXiv preprint arXiv:1503.02798, 2015
  14. A. R. Calderbank, P. Delsarte and N. J. A. Sloane, A Strengthening of the Assmus-Mattson Theorem, IEEE Trans. Information Theory, 37 (1991), pp. 1261-1268. (postscript, pdf)
  15. Chris K. Caldwell and Yuanyou Cheng, "Determining Mills' Constant and a Note on Honaker's Problem", J. Integer Sequences, Volume 8, 2005, Article 05.4.1.
  16. C. Caldwell and G. L. Honaker, Jr., "Palindromic prime pyramids," J. Recreational Math., 30:3 (1999-2000) 169-176. [ps, pdf, doc]
  17. C. Caldwell and G. L. Honaker, Jr., Is pi(6521)=6!+5!+2!+1! unique?, Math. Spectrum, 22:2 (2000/2001) 34-36. [ps, pdf, doc]
  18. Chris K. Caldwell, Angela Reddick, Yeng Xiong and Wilfrid Keller, "The History of the Primality of One: A Selection of Sources" (a dynamic survey), Journal of Integer Sequences, Vol. 15 (2012), #12.9.8.
  19. C. K. Caldwell and Y. Xiong, What is the smallest prime?, arXiv preprint arXiv:1209.2007, 2012
  20. N. Calkin and H. S. Wilf, Recounting the rationals, Amer. Math. Monthly, 107 (No. 4, 2000), pp. 360-363. (Only the printed version mentions the On-Line Encyclopedia of Integer Sequences.)
  21. J. Callaghan, J. J. Chew, III and S. M. Tanny, On the Behaviour of a Family of Meta-Fibonacci Sequences, SIAM J. Discrete Math. 18 (2005), no. 4, 794-824.
  22. David Callan, Certificates of Integrality for Linear Binomials, Fibonacci Quarterly, 38 (Aug 2000), 317-325.
  23. David Callan, "A Combinatorial Derivation of the Number of Labeled Forests", J. Integer Sequences, Volume 6, 2003, Article 03.4.7.
  24. Callan, David, A uniformly distributed statistic on a class of lattice paths. Electron. J. Combin. 11 (2004), no. 1, Research Paper 82, 8 pp.
  25. David Callan, "Counting Stabilized-Interval-Free Permutations", J. Integer Sequences, Volume 7, 2004, Article 04.1.8.
  26. David Callan, "A Combinatorial Interpretation for a Super-Catalan Recurrence", J. Integer Sequences, Volume 8, 2005, Article 05.1.8.
  27. David Callan, "A Combinatorial Interpretation of the Eigensequence for Composition", J. Integer Sequences, Volume 9, 2006, Article 06.1.4.
  28. David Callan, A Combinatorial Interpretation of j/n {kn}\choose{n+j} (2006), arXiv:math/0604471.
  29. David Callan, "On Generating Functions Involving the Square Root of a Quadratic Polynomial", J. Integer Sequences, Volume 10, 2007, Article 07.5.2.
  30. David Callan, Sets, Lists and Noncrossing Partitions (2007), arXiv:0711.4841 and JIS 11 (2008) 08.1.3.
  31. David Callan, A bijection on Dyck paths and its cycle structure, El. J. Combinat. 14 (2007) # R28
  32. David Callan, Klazar trees and perfect matchings (2008); arXiv:0810.4901
  33. D. Callan, A combinatorial interpretation for an identity of Barrucand, JIS 11 (2008) 08.3.4
  34. David Callan, A combinatorial survey of identities for the double factorial, arXiv:0906.1317
  35. D. Callan, Pattern avoidance in "flattened" partitions, Discrete Math., 309 (2009), 4187-4191.
  36. D. Callan, A bijection to count (1-23-4)-avoiding permutations, arXiv:1108.2375
  37. D. Callan, The number of bar(2)413 bar(5)-avoiding permutations, arXiv:1110.6884
  38. D. Callan, A combinatorial interpretation of the Catalan transform of the Catalan numbers, arXiv:1111.0996
  39. D. Callan, The number of bar(31)542-avoiding permutations, arXiv:1111.3088
  40. D. Callan, A permutation pattern that illustrates the strong law of small numbers, arXiv:1111.6297
  41. D. Callan, A variant of Touchard's Catalan number identity, Arxiv preprint arXiv:1204.5704, 2012
  42. D. Callan, An identity for the central binomial coefficient, Arxiv preprint arXiv:1206.3174, 2012
  43. D. Callan, An application of a bijection of Mansour, Deng, and Du, arXiv preprint arXiv:1210.6455, 2012
  44. D. Callan (Proposer), Problem 11567, Amer. Math. Monthly, 120 (2013), 369-371.
  45. D. Callan, The number of {1243, 2134}-avoiding permutations, arXiv preprint arXiv:1303.3857, 2013
  46. David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784, 2014.
  47. D. Callan, On permutations avoiding the dashed patterns 32-41 and 41-32, arXiv preprint arXiv:1405.2064, 2014
  48. David Callan, A bijection for two sequences in OEIS, arXiv:1602.08347 (2016)
  49. David Callan, Bijections for Dyck paths with all peak heights of the same parity, arXiv:1702.06150 [math.CO], 2017.
  50. David Callan and Emeric Deutsch, The Run Transform, Arxiv preprint arXiv:1112.3639, 2011; Discrete Math., 312 (2012), 2927-2937.
  51. David Callan, Shi-Mei Ma, Toufik Mansour, Some Combinatorial Arrays Related to the Lotka-Volterra System, Electronic Journal of Combinatorics, Volume 22, Issue 2 (2015), Paper #P2.22. (A008292, A008971)
  52. David Callan, SM Ma, T Mansour, Restricted Stirling permutations, arXiv preprint arXiv:1607.06006, 2016
  53. D Callan, T Mansour, Five subsets of permutations enumerated as weak sorting permutations, arXiv preprint arXiv:1602.05182, 2016
  54. D Callan, T Mansour, Enumeration small classes of 1324 and other 4-letter patterns, arXiv:1705.00933 (2017)
  55. Callan, David; Mansour, Toufik (2017). "Enumeration of small Wilf Classes avoiding 1342 and two other 4-letter patterns". arΧiv:1708.00832. 
  56. D. Callan, T. Mansour, M. Shattuck, Restricted ascent sequences and Catalan numbers, arXiv preprint arXiv:1403.6933, 2014
  57. F. Callegaro, G. Gaiffi, On models of the braid arrangement and their hidden symmetries, arXiv preprint arXiv:1406.1304, 2014
  58. C. S. Calude, E. Calude and M. J. Dinneen, What is the value of Taxicab(6)?, J. Universal Computer Science, 9 (2003), 1196-1203.
  59. H Cambazard, N Catusse, Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the Plane, arXiv preprint arXiv:1512.06649, 2015
  60. Ian Cameron, Adam Rogers and Peter Loly, "The Library of Magical Squares" - a summary of the main results for the Shannon entropy of magic and Latin squares: isentropic clans and indexing, in celebration of George Styanís 75th", http://www.physics.umanitoba.ca/~icamern/Poland2012/Data/Bewedlo%20Codex.pdf.
  61. I. Cameron, A. Rogers, P. D. Loly, Signatura of magic and latin integer squares: isentropic clans and indexing, Discussiones Mathematicae, Probability and Statistics, 33 (2013) 121-125.
  62. Naiomi Cameron, JE McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.
  63. Naiomi T. Cameron and Asamoah Nkwanta, "On Some (Pseudo) Involutions in the Riordan Group", J. Integer Sequences, Volume 8, 2005, Article 05.3.7.
  64. Cameron, Peter J. Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009).
  65. P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102 ; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
  66. P. J. Cameron, Counting two-graphs related to trees, Electronic Journal of Combinatorics, Volume 2(1), 1995, R#4.
  67. P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994 (reprinted 1996).
  68. P. J. Cameron, Stories about groups and sequences, in Special issue dedicated to Hanfried Lenz of Des. Codes Cryptogr. 8 (1996), no. 1-2, 109-133 (DVI or PostScript). Corrected reprint in op. cit. 8 (1996), no. 3, 109-133.
  69. P. J. Cameron, The algebra of an age, pp. 126-133 in Model Theory of Groups and Automorphism Groups (ed. D. M. Evans), London Mathematical Society Lecture Notes 244, Cambridge University Press, Cambridge, 1997. (dvi, ps)
  70. Peter J. Cameron, "Sequences Realized by Oligomorphic Permutation Groups", J. Integer Sequences, Volume 3, 2000, Article 00.1.5.
  71. P. J. Cameron, Homogeneous permutations, Electronic J. Combinatorics 9(2) (2002), #R2 (9pp).
  72. Cameron, Peter J. Research problems from the 19th British Combinatorial Conference. Discrete Math. 293 (2005), no. 1-3, 313-320.
  73. P. J. Cameron, M. Gadouleau, J. D. Mitchell, Y. Peresse, Chains of subsemigroups, arXiv preprint arXiv:1501.06394, 2015
  74. P. J. Cameron, D. A. Gewurz and F. Merola, Product action, Discrete Math., 308 (2008), 386-394.
  75. P. J. Cameron and C. R. Johnson, The number of equivalence patterns of symmetric sign patterns, Discr. Math., 306 (2006), 3074-3077.
  76. Peter J. Cameron, Andrea Lucchini and Colva M. Roney-Dougal, Generating sets of finite groups, arXiv:1609.06077, 2016.
  77. P. J. Cameron and D. A. Preece, Primitive lambda-roots, Combinatorics Study Group notes, March 2003.
  78. Peter Cameron, Thomas Prellberg and Dudley Stark, Asymptotic enumeration of incidence matrices (2005), arXiv:math/0511008.
  79. P. J. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes , Electron. J. Combin. 13 (2006), no. 1, Research Paper 85, 19 pp.
  80. Saverio Caminiti and Emanuele G. Fusco, "On the Number of Labeled k-arch Graphs", J. Integer Sequences, Volume 10, 2007, Article 07.7.5.
  81. Donald E. Campbell, Jack Graver and Jerry S. Kelly, There are more strategy-proof procedures than you think, Mathematical Social Sciences 64 (2012) 263-265.
  82. Geoffrey B. Campbell, A Zujev, Some almost partition theoretic identities, Preprint, 2016; http://zujev.physics.ucdavis.edu/papers/Some%20almost%20partition%20theoretic%20identities.pdf
  83. Geoffrey B. Campbell, A Zujev, Some left nested radicals, Preprint 2016; http://zujev.physics.ucdavis.edu/papers/Some_left_nested_radicals.pdf
  84. Campbell, John, A class of symmetric difference-closed sets related to commuting involutions, Discrete Mathematics & Theoretical Computer Science, Vol 19 no. 1, 2017; https://dmtcs.episciences.org/3210/pdf; https://hal.archives-ouvertes.fr/hal-01345066/document
  85. John M. Campbell, An Integral Representation of Kekule' Numbers, and Double Integrals Related to Smarandache Sequences, Arxiv preprint arXiv:1105.3399, 2011.
  86. R. B. Campbell, The effect of inbreeding constraints and offspring distribution on time to the most recent common ancestor, Journal of Theoretical Biology, Volume 382, 7 October 2015, Pages 74–80.
  87. Cezar Campeanu, Nelma Moreira and Rogerio Reis, Expected Compression Ratio for DFCA: experimental average case analysis, Technical Report Series: DCC-2011-07, December 2011, Departamento de Ciencia de Computadores, Universidade do Porto; http://www.dcc.fc.up.pt/dcc/Pubs/TReports/TR11/dcc-2011-07.pdf
  88. Mahir Bilen Can and Özlem Uğurlu, The genesis of involutions (polarizations and lattice paths), arXiv:1703.09881 [math.CO], 2017.
  89. C. Canaan, M. S. Garai and M. Daya. All about Fibonacci: A python approach, 2011, preprint.
  90. Agustin M. Cañadas, H Giraldo, GB Rios, An algebraic approach to the number of some antichains in the powerset 2^n, JP Journal of Algebra, Number Theory and Applications, Volume 38, Number 1, 2016, Pages 45-62; doi:10.17654/NT038010045
  91. E. Rodney Canfield, Carla D. Savage and Herbert S. Wilf, arXiv:math.CO/0308061 Regularly Spaced Subsums of Integer Partitions, Acta Arith. 115 (2004), no. 3, 205-216.
  92. E. Rodney Canfield, Herbert S. Wilf, Counting permutations by their alternating runs, arXiv:math/0609704, Journal of Combinatorial Theory, Series A, Volume 115, Issue 2, February 2008, Pages 213-225.
  93. Fabrizio Canfora, Maxim Kurkov, Luigi Rosa, Patrizia Vitale, The Gribov problem in Noncommutative QED, preprint arXiv:1505.06342, 2015. (A001353)
  94. C. Cannings, "The Stationary Distributions of a Class of Markov Chains," Applied Mathematics, Vol. 4 No. 5, 2013, pp. 769-773. doi:10.4236/am.2013.45105.
  95. C. Cannings, J. Haigh, Montreal Solitaire, Journal of Combinatorial Theory, Series A, Volume 60, Issue 1, May 1992, Pages 50-66.
  96. J. W. Cannon, W. J. Floyd, L. Lambert, W. R. Parry and J. S. Purcell, Bitwist manifolds and two-bridge knots, arXiv preprint arXiv:1306.4564, 2013
  97. J Cantarella, H Chapman, M Mastin, Knot Probabilities in Random Diagrams, arXiv preprint arXiv:1512.05749, 2015
  98. Y. Cao, D. W. Casbeer, C. Schumacher, Reaching consensus in the sense of probability, in American Control Conference (ACC), 2013, Date of Conference: 17-19 June 2013, pp. 5415 - 5420; ISSN : 0743-1619; Print ISBN: 978-1-4799-0177-7; INSPEC Accession Number: 13809285
  99. N-N. Cao, F-Z. Zhao, Some Properties of Hyperfibonacci and Hyperlucas Numbers, J. Int. Seq. 13 (2010) # 10.8.8
  100. Jose Capco, Matteo Gallet, Georg Grasegger, Christoph Koutschan, Niels Lubbes, Josef Schicho. The number of realizations of a Laman graph. arXiv:1701.05500 [math.AG], 2017.
  101. S. Capparelli, A. Del Fra, Dyck Paths, Motzkin Paths, and the Binomial Transform, Journal of Integer Sequences, 18 (2015), #15.8.5.
  102. M. Caragiu, doi:10.1007/978-3-319-56762-4, Sequential experiments with primes, Springer, (2017), page 13.
  103. Mihai Caragiu, P. A. Vicol. M. Kaki, On Conway’s subprime function, a covering of N and an unexpected appearance of the golden ratio, Fib. Q., to appear, 2017.
  104. J Cárcamo, Maps Preserving Moment Sequences, Journal of Theoretical Probability, 2015, pp. 1-21.
  105. Jean Cardinal, S Felsner, Topological Drawings of Complete Bipartite Graphs, arXiv:1608.08324, 2016 (The OEIS is referenced in version v1 but not in v2)
  106. Gabriel Cardona, Merce Llabres, Francesc Rossello et al., Nodal distances for rooted phylogenetic trees (2008); arXiv:0806.2035
  107. A. Cardoso, T. Veale, G. A. Wiggins, Converging on the Divergent: The History (and Future) of the International Joint Workshops in Computational Creativity, Association for the Advancement of Artificial Intelligence. ISSN 0738-4602; PDF
  108. N. Carey, Lambda Words: A Class of Rich Words Defined Over an Infinite Alphabet, arXiv preprint arXiv:1303.0888, 2013, and J. Int. Seq. 16 (2013) #13.3.4
  109. Claude Carlet, Philippe Gaborit, Jon-Lark Kim and Patrick Sole, A new class of codes for Boolean masking of cryptographic computations, Arxiv preprint arXiv:1110.1193, 2011
  110. J. Carlsson and B. H. J. McKellar, SU(N) Glueball Masses in 2+1 Dimensions, arXiv:hep-lat/0303016, (2003).
  111. P. Caron, J.-M. Champarnaud and L. Mignot, Multi-tilde-bar expressions and their automata, Acta Informatica, September 2012, Volume 49, Issue 6, pp 413-436. doi:10.1007/s00236-012-0167-x.
  112. A. Carocca, R. E. Rodriguez, A. M. Rojas, Symmetric group actions on Jacobian varieties, in Riemann and Klein Surfaces, Automorphisms, Symmetries and Moduli Spaces edited by Milagros Izquierdo, S. Allen Broughton, Antonio F. Costa, Contemp. Math. vol. 629, 2014.
  113. Manuel Caroli, Monique Teillaud. Delaunay triangulations of closed Euclidean dorbifolds. Discrete and Computational Geometry, Springer Verlag, 2016, 55 (4), pp.827–853. 10.1007/s00454-016-9782-6, hal-01294409; https://hal.inria.fr/hal-01294409/document
  114. Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, Bruno Patrou, State complexity of catenation combined with a boolean operation: a unified approach, preprint arXiv:1505.03474, 2015. (A000110, A000296, A008277, A000587)
  115. C. Carré, N. Debroux, M. Deneufchatel, J.-P. Dubernard et al., Dirichlet convolution and enumeration of pyramid polycubes, 2013; http://hal.archives-ouvertes.fr/docs/00/90/58/89/PDF/polycubes.pdf PDF]
  116. C Carré, N Debroux, M Deneufchâtel, JP Dubernard, et al., Enumeration of Polycubes and Dirichlet Convolutions, Journal of Integer Sequences #Vol 18 2015, #15.11.4.
  117. Cartwright, Dustin A.; Cueto, María Angélica; Tobis, Enrique A. The maximum independent sets of de Bruijn graphs of diameter 3. Electron. J. Combin. 18 (2011), no. 1, Paper 194, 18 pp.
  118. A. Casagrande, C. Piazza, A. Policriti, Is hyper-extensionality preservable under deletions of graph elements?⋆, Preprint 2015, http://sets2015.cnam.fr/papers/00010001.pdf
  119. Ignacio Cascudo, On squares of cyclic codes, arXiv:1703.01267 [cs.IT], 2017.
  120. G. G. Cash, doi:10.1021/ci0300238 Immanants and Immanantal Polynomials of Chemical Graphs, J. Chem. Inf Comp. Sci. 43 (6) (2003) 1942-1946.
  121. Gordon G. Cash and Jerry Ray Dias, Computation, Properties and Resonance Topology of Benzenoid Monoradicals and Polyradicals and the Eigenvectors Belonging to Their Zero Eigenvalues, J. Math. Chem., 30 (2002), 429-444.
  122. Cassaigne, Julien; Ferenczi, Sébastien; Zamboni, Luca Q. Combinatorial trees arising in the study of interval exchange transformations. European J. Combin. 32 (2011), no. 8, 1428-1444.
  123. Julien Cassaigne, J Karhumäki, S Puzynina, MA Whiteland, k-Abelian Equivalence and Rationality, in International Conference on Developments in Language Theory DLT 2016: Developments in Language Theory pp 77-88, Lecture Notes in Computer Science book series (LNCS, volume 9840), doi:10.1007/978-3-662-53132-7_7
  124. Julien Cassaigne, Juhani Karhumaki, Svetlana Puzynina, Markus A. Whiteland, k-Abelian Equivalence and Rationality, Fundamenta Informaticae 154 (2017) 1–30, doi:10.3233/FI-2017-1531
  125. Castiglione, G.; Frosini, A.; Munarini, E.; Restivo, A.; Rinaldi, S., Combinatorial aspects of L-convex polyominoes. European J. Combin. 28 (2007), no. 6, 1724-1741.
  126. Castiglione, G.; Frosini, A.; Restivo, A.; Rinaldi, S., Enumeration of L-convex polyominoes by rows and columns. Theoret. Comput. Sci. 347 (2005), no. 1-2, 336-352.
  127. G Castiglione and A Restivo, L-convex polyominoes: a survey, Chapter 2 of K. G. Subranian et al., eds., Formal Models, Languages and Applications, World Scientific, 2015
  128. G. Castiglione, M. Sciortino, Standard sturmian words and automata minimization algorithms, Theoretical Computer Science, Volume 601, 11 October 2015, Pages 58–66 ("WORDS 2013").
  129. I. P. Castillo, D. Boyer, A generalised Airy distribution function for the total area swept by N vicious Brownian paths, arXiv preprint arXiv:1507.03203, 2015 ["By checking explicitly the value of some of these coeffcients, and with the help of the Sloane database, we arrive at the solution..."] Also Journal of Statistical Physics, (2016) 162: 1587. doi:10.1007/s10955-016-1467-2
  130. Jose Castillo, Other Smarandache type functions
  131. Jose Castillo, Smarandache continued fractions, (no date), http://www.gallup.unm.edu/~smarandache/CONT-FR.HTM
  132. J. H. Castillo, G. García-Pulgarín, J. M. Velásquez-Soto, q-Pseudoprimality: A natural generalization of strong pseudoprimality, arXiv preprint arXiv:1412.5226, 2014
  133. RC Castillo, On the Sum of Corresponding Factorials and Triangular Numbers: Runsums, Trapezoids and Politeness, Asia Pacific Journal of Multidisciplinary Research, 3 (2015), 95-101.
  134. R. C. Castillo, On the Sum of Corresponding Factorials and Triangular Numbers: Some Preliminary Results, Asia Pacific Journal of Multidisciplinary Research, Vol. 3, No. 4, November 2015 Part I.
  135. Romer C. Castillo, A Survey on Triangular Number, Factorial and Some Associated Numbers, Indian Journal of Science and Technology, Vol 9(41), doi:10.17485/ijst/2016/v9i41/85182, November 2016
  136. F. N. Castro, O. E. González, L. A. Medina, The p-adic valuation of Eulerian numbers: trees and Bernoulli numbers, 2014; http://emmy.uprrp.edu/lmedina/papers/eulerian/EulerianFinal.pdf
  137. F. Castro-Velez, A. Diaz-Lopez, R. Orellana, J. Pastrana and R. Zevallos, Number of permutations with same peak set for signed permutations, arXiv preprint arXiv:1308.6621, 2013
  138. M. Catalani, Polymatrix and generalized polynacci numbers, (2002). arXiv:math.CO/0210201
  139. M. Catalani, Identities for Tribonacci-related sequences, (2002). arXiv:math.CO/0209179
  140. M. Catalani, Sequences related to convergents to square root of rationals, (2003). arXiv:math.NT/0305270
  141. M. Catalani, On the average of triangular numbers, (2003). arXiv:math.NT/0304160
  142. M. Catalani, Sequences related to the Pell generalized equation, (2003). arXiv:math.CO/0304062
  143. P Catarino, H Campos, P Vasco, On some identities for balancing and cobalancing numbers, Annales Mathematicae et Informaticae, 45 (2015) pp. 11–24; http://ami.ektf.hu.
  144. P Catarino, H Campos, P Vasco, On the Mersenne sequence. Annales Mathematicae et Informaticae, 46 (2016) pp. 37–53.
  145. Minerva Catral, PL Ford, PE Harris, SJ Miller, et al. Legal Decompositions Arising from Non-positive Linear Recurrences, arXiv preprint arXiv:1606.09312, 2016
  146. H. Caure, C. Agon, M. Andreatta, Modulus p Rhythmic Tiling Canons and some implementations in Open Music visual programming language, in Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece; http://architexte.ircam.fr/textes/Caure14a/index.pdf
  147. E. R. Cavalcanti and M. A. Spohn, On the applicability of mobility metrics for user movement pattern recognition in MANETs, in Proceeding MobiWac '13 Proceedings of the 11th ACM international symposium on Mobility management and wireless access, Pages 123-130, ACM New York, NY, USA 2013, ISBN: 978-1-4503-2355-0 doi:10.1145/2508222.2508228
  148. N. Cavenagh and P. Lisonek, Planar Eulerian triangulations are equivalent to spherical latin bitrades, J. Combin. Theory Ser. A 115 (2008), no. 1, 193-197. [Although the OEIS is not mentioned, the discovery in this paper was made using the OEIS.]
  149. N. J. Cavenagh and I. M. Wanless, On the number of transversals in Cayley tables of cyclic groups, Disc. Appl. Math. 158 (2010), 136-146.
  150. Geoffrey Caveney, Jean-Louis Nicolas and Jonathan Sondow, ROBIN'S THEOREM, PRIMES, AND A NEW ELEMENTARY REFORMULATION OF THE RIEMANN HYPOTHESIS, INTEGERS 11 (2011), #A33.
  151. G. Caveney, J.-L. Nicolas and J. Sondow, On SA, CA, and GA numbers, Ramanujan J., 29 (2012), 359-384 arXiv:1112.6010.
  152. F. Cazals, Combinatorial properties of one-dimensional arrangements. J. Exp. Math. 6, No.1, 87-94 (1997).
  153. F. Cazals, Combinatorics of Non-Crossing Configurations, Studies in Automatic Combinatorics, Volume II (1997).
  154. F. Cazals, Monomer-Dimer Tilings, Studies in Automatic Combinatorics, Vol. 2, 1997.
  155. C. Ceballos, F. Santos and G. M. Ziegler, Many non-equivalent realizations of the associahedron, Arxiv preprint arXiv:1109.5544, 2011
  156. M. Celaya, F. Ruskey, Morphic Words and Nested Recurrence Relations, arXiv preprint arXiv:1307.0153, 2013
  157. Richell O. Celeste, Roberto B. Corcino, Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients. Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
  158. J. L. Cereceda, Generalized Akiyama-Tanigawa Algorithm for Hypersums of Powers of Integers, Journal of Integer Sequences, 16 (2013), #13.3.2.
  159. J. L. Cereceda, Iterative Procedure for Hypersums of Powers of Integers, Journal of Integer Sequences, 17 (2014), #14.5.3.
  160. Raphaël Cerf, Joseba Dalmau, The quasispecies distribution, arXiv:1609.05738, 2016.
  161. Cerin, Zvonko, Some alternating sums of Lucas numbers. Cent. Eur. J. Math. 3 (2005), no. 1, 1-13 .
  162. Zvonko Cerin, "Sums of Squares and Products of Jacobsthal Numbers", J. Integer Sequences, Volume 10, 2007, Article 07.2.5.
  163. Z. Cerin, Formulae for sums of Jacobsthal-Lucas numbers. Int. Math. Forum 2 (2007), no. 37-40, 1969-1984.
  164. Zvonko Cerin, On factors of sums of consecutive Fibonacci and Lucas numbers, Annales Mathematicae et Informaticae, 41 (2013) pp. 19-25.
  165. Z. Cerin, Squares in Euler triples from Fibonacci and Lucas numbers, Cubo, 2013, vol. 15, no. 2, pp. 79-88. ISSN 0719-0646.
  166. Zvonko čerin, Formulas for Linear Sums that Involve Generalized Fibonacci and Lucas Numbers, Sarajevo Journal of Mathematics, Vol.11 (23), No.1, (2015), 3-15.
  167. Z. Cerin, Formulas for quadratic sums that involve generalized Fibonacci and Lucas numbers, RAD HAZU. MATEMATIČKE ZNANOSTI, Vol. 19 = 523 (2015): 1-12; file:///Users/njasloane/Downloads/1_19RAD523.pdf
  168. J. Cernenoks and A. Cibulis, Application of IT in Mathematical Proofs and in Checking of Results of Pupils' Research, International Conference on Applied Information and Communication Technologies (AICT2013), 25.-26. April, 2013, Jelgava, Latvia; PDF
  169. Juris Cernenoks, Janis Iraids, Martins Opmanis, Rihards Opmanis, Karlis Podnieks, Integer Complexity: Experimental and Analytical Results II, arXiv:1409.0446, 2014
  170. Sung-Hyuk Cha, On the k-ary Tree Combinatorics, PDF
  171. Sung-Hyuk Cha, On Integer Sequences Derived from Balanced k-ary Trees, Applied Mathematics in Electrical and Computer Engineering, http://www.wseas.us/e-library/conferences/2012/CambridgeUSA/MATHCC/MATHCC-60.pdf, 2012.
  172. Sung-Hyuk Cha, On Complete and Size Balanced k-ary Tree Integer Sequences, INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS, Issue 2, Volume 6, 2012, pp. 67-75; http://naun.org/multimedia/UPress/ami/16-125.pdf.
  173. Sung-Hyuk Cha, On Parity based Divide and Conquer Recursive Functions; http://csis.pace.edu/~scha/IS/FOGKN.pdf, 2012.
  174. Sung-Hyuk Cha, Edgar G. DuCasse, and Louis V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arXiv:1405.5283, 2014
  175. Yongjae Cha, Mark van Hoeij and Giles Levy, Solving Linear recurrence equations ISAAC'10 (2010)
  176. Yongjae Cha, Mark van Hoeij and Giles Levy, Solving Linear Recurrence Relations, SIGSAM Bulletin, Vol. 44, Issue 172, Number 2 June 2010; http://www.sigsam.org/bulletin/articles/172/CCA-172-full.pdf#page=8. "We have done an automated search in Sloane's online encyclopedia of integer sequences to find sequences that satisfy a second order recurrence."
  177. J. L. Chabert, doi:10.1016/j.ejc.2005.12.009 Integer-valued polynomials on prime numbers and logarithm power expansion. Eur. J. Combin. 26 (3) (2007) 754
  178. Jean-Luc Chabert and Paul-Jean Cahen, Old problems and new questions around integer-valued polynomials and factorial sequences, in Multiplicative Ideal Theory in Commutative Algebra, Springer-Verlag.
  179. Benjamin Chaffin and N. J. A. Sloane, The Curling Number Conjecture, arXiv:0912.2382
  180. Benjamin Chaffin, John P. Linderman, N. J. A. Sloane and Allan R. Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102, 2012.
  181. Chaichanavong, Panu; Marcus, Brian H. Stabilization of block-type-decodability properties for constrained systems. SIAM J. Discrete Math. 19 (2005), no. 2, 321-344 .
  182. S. Chaiken, C. R. H. Hanusa, Th. Zaslavsky, doi:10.1007/s00026-011-0068-7 Nonattacking queens in a rectangular strip, Ann. Comb. 14 (2010) 4191-441.
  183. S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, A q-queens problem I. General theory, January 26, 2013; http://www.math.binghamton.edu/zaslav/Tpapers/qq1.pdf.
  184. S. Chaiken, C. R. H. Hanusa, T. Zaslavsky, A q-queens problem III. Partial queens, http://www.math.binghamton.edu/zaslav/Tpapers/qqs3.pdf; February 19, 2014
  185. N. Chair, arXiv:hep-th/9808170 Explicit Computations for the Intersection Numbers on Grassmannians and on the Space of Holomorphic Maps from CP^1 into G_r(C^n), Trieste 1998, 16 p. (SISSA-ISAS 92/98/FM-EP).
  186. Chair, Noureddine, Intersection numbers on Grassmannians and on the space of holomorphic maps from CP^1 into G_r(C^n). J. Geom. Phys. 38 (2001), no. 2, 170-182.
  187. Chair, Noureddine, The Waring formula and fusion rings. J. Geom. Phys. 37 (2001), no. 3, 216-228.
  188. Noureddine Chair, Partition Identities From Partial Supersymmetry (2004), arXiv:hep-th/0409011.
  189. M. F. Challis, J. P. Robinson, Some extremal postage stamp bases, JIS 13 (2010) #10.2.3.
  190. Luke Chamandy, Anvar Shukurov, A. Russ Taylor, Statistical tests of galactic dynamo theory, arXiv:1609.05688, 2016.
  191. Jean-François Chamayou, A Random Difference Equation with Dufresne Variables revisited, arXiv:1410.1708, 2014.
  192. R Chamberlain, G Cochran, S Ginsburg, BK Miceli, M Riehl, Generating Functions and Wilf Equivalence for Generalized Interval Embeddings, AUSTRALASIAN JOURNAL OF COMBINATORICS, Volume 64(1) (2016), Pages 44–60.
  193. Russell Chamberlain, Sam Ginsburg, Manda Riehl and Chi Zhang, Generating Functions and Wilf-equivalence on Theta_k-embeddings, http://www.uwec.edu/surepam/SUREPAM%202011/Manda.pdf
  194. Marc Chamberland, "Binary BBP-Formulae for Logarithms and Generalized Gaussian-Mersenne Primes", J. Integer Sequences, Volume 6, 2003, Article 03.3.7.
  195. M. Chamberland, Factored matrices can generate combinatorial identities, http://www.math.grinnell.edu/~chamberl/papers/matrix_factoring.pdf. "Sequence recognition is supported by using the On-Line Encyclopedia of Integer Sequences (http://oeis.org/) or the Maple package gfun."
  196. Marc Chamberland and Christopher French, "Generalized Catalan Numbers and Generalized Hankel Transformations", J. Integer Sequences, Volume 10, 2007, Article 07.1.1.
  197. Marc Chamberland, Colin Johnson, Alice Nadeau, and Bingxi Wu, Multiplicative Partitions, Electronic Journal of Combinatorics, 20(2) (2013), #P57.
  198. Marc Chamberland, K Zhan, A new representation for Legendre polynomials, Preprint 2016, http://www.math.grinnell.edu/~chamberl/papers/fib_conf.pdf
  199. Jean-Marc Champarnaud, Quentin Cohen-Solal, Jean-Philippe Dubernard, Hadrien Jeanne, Enumeration of Specific Classes of Polycubes, Electronic Journal of Combinatorics, 20(4) (2013), #P26.
  200. A. C. Chan, W. I. Gasarch and C. P. Kruskal, Refined Upper and Lower Bounds for Two-sum. 1997.
  201. Eunice Y. S. Chan, A comparison of solution methods for Mandelbrot-like polynomials, MS Thesis, 2016, University of Western Ontario; Electronic Thesis and Dissertation Repository. 4028. http://ir.lib.uwo.ca/etd/4028.
  202. Eunice Y. S. Chan, RM Corless, Narayana, Mandelbrot, and A New Kind of Companion Matrix, arXiv preprint arXiv:1606.09132, 2016
  203. Heng Huat Chan, Yoshio Tanigawa, Yifan Yang and Wadim Zudilin, New analogues of Clausen's identities arising from the theory of modular forms, Advances in Mathematics, Volume 228, Issue 2, 1 October 2011, Pages 1294-1314; doi:10.1016/j.aim.2011.06.011;
  204. Melody Chan, Tropical hyperelliptic curves, Arxiv preprint arXiv:1110.0273, 2011
  205. Melody T. Chan, Tropical curves and metric graphs, Ph. D. Dissertation, Univ. Calif. Berkeley, Spring 2012, http://math.berkeley.edu/~mtchan/thesis_mchan.pdf.
  206. O-Yeat Chan, Dante Manna, Divisibility properties of Stirling numbers of the second kind
  207. Swee Hong Chan, Henk D. L. Hollmann and Dmitrii V. Pasechnik, Critical groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, arXiv:1312.2114, 2013.
  208. S. H. Chan, H. D. L. Hollmann, D. V. Pasechnik, Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, arXiv preprint arXiv:1405.0113, 2014
  209. Tak-Shing T. Chan, YH Yang, Polar n-Complex and n-Bicomplex Singular Value Decomposition and Principal Component Pursuit, IEEE Transactions on Signal Processing ( Volume: 64, Issue: 24, Dec.15, 15 2016 ); doi:10.1109/TSP.2016.2612171
  210. Ray Chandler and Eugen J. Ionascu, A characterization of all equilateral triangles in Z^3 (2007), arXiv:0710.0708.
  211. Ray Chandler and Eugen J. Ionascu, A characterization of all equilateral triangles in Z^3 INTEGERS 8 (2008) #A19
  212. Chang, Huilan; Eu, Sen-Peng; Lo, Yuan-Hsun Sign imbalances of snakes and valley-signed permutations. Adv. in Appl. Math. 59 (2014), 26-47.
  213. Shu-Chiuan Chang and Lung-Chi Chen, Spanning forests on the Sierpinski gasket (2006), arXiv:math-ph/0612083.
  214. Shu-Chiuan Chang, Jesper Lykke Jacobsen, Jesus Salas and Robert Shrock, Exact Potts Model Partition Functions for Strips of the Triangular Lattice, Journal of Statistical Physics, Volume 114, Numbers 3-4 / February, 2004.
  215. Shu-Chiuan Chang, Jesus Salas and Robert Shrock, Exact Potts Model Partition Functions for Strips of the Square Lattice, Journal of Statistical Physics, Volume 107, Numbers 5-6 / June, 2002.
  216. Shu-Chiuan Chang, Robert Shrock, Structural properties of Potts model partition functions and chromatic polynomials for lattice strips, Physica A: Statistical Mechanics and its Applications, Volume 296, Issues 1-2, 1 July 2001, Pages 131-182.
  217. Shu-Chiuan Chang and Robert Shrock, Flow Polynomials and Their Asymptotic Limits for Lattice Strip Graphs, Journal of Statistical Physics, Volume 112, Numbers 3-4 / August, 2003.
  218. Shu-Chiuan Chang, Robert Shrock, Transfer matrices for the partition function of the Potts model on lattice strips with toroidal and Klein-bottle boundary conditions, Physica A: Statistical Mechanics and its Applications, Volume 364, 15 May 2006, Pages 231-262.
  219. Xiang-Ke Chang, XB Hu, H Lei, YN Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
  220. X.-K. Chang, X.-B. Hu and G.-F. Yu, An integrable semi-discrete equation and combinatorial numbers with their combinatorial interpretations, Journal of Difference Equations and Applications, 2012, doi:10.1080/10236198.2012.719024
  221. Zuling Chang, MF Ezerman, S Ling, H Wang, Construction of de Bruijn Sequences from Product of Two Irreducible Polynomials, arXiv preprint arXiv:1604.04351, 2016
  222. Zuling Chang, Martianus Frederic Ezerman, Adamas Aqsa Fahreza, San Ling, Huaxiong Wang, Large Order Binary de Bruijn Sequences via Zech's Logarithms, arXiv:1705.03150 [cs.IT], 2017.
  223. Robin J. Chapman, Timothy Y. Chow, Amit Khetan et al., Simple formulas for lattice paths avoiding certain periodic staircase boundaries (2007), arXiv:0705.2888; Journal of Combinatorial Theory, Series A, Volume 116, Issue 1, January 2009, Pages 205-214.
  224. Chapoton, F., Sur le nombre d'intervalles dans les treillis de Tamari. Sém. Lothar. Combin. 55 (2005/06), Art. B55f, 18 pp.
  225. F. Chapoton, S. Giraudo, Enveloping operads and bicoloured noncrossing configurations, arXiv preprint arXiv:1310.4521, 2013
  226. F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092, 2013
  227. F. Chapoton, Florent Hivert, Jean-Christophe Novelli et al., An operational calculus for the Mould operad (2007), arXiv:0710.0349.
  228. F. Chapoton and L. Manivel, Triangulations and Severi varieties, Arxiv preprint arXiv:1109.6490, 2011
  229. Chappelon, Jonathan; Matsuura, Akihiro On generalized Frame-Stewart numbers. Discrete Math. 312 (2012), no. 5, 830-836.
  230. G. Chapuy, The asymptotic number of 12..d-Avoiding Words with r occurrences of each letter 1, 2,..., n, arXiv preprint arXiv:1412.6070, 2014
  231. V. Chari, L. Schneider, P. Shereen, J. Wand, Modules with Demazure flags and character formulae, arXiv preprint arXiv:1310.5191, 2013
  232. Emilie Charlier, Narad Rampersad, The growth function of S-recongizable sets, arXiv:1101.0036 [cs.FL]
  233. B. A. Chat, S. Pirzada, A. Iványi, Recognition of split-graphic sequences, Acta Universitatis Sapientiae, Informatica, 6, 2 (2014) 252–286.
  234. G. Chatel, V. Pilaud, The Cambrian and Baxter-Cambrian Hopf Algebras, arXiv preprint arXiv:1411.3704, 2014
  235. Grégory Chatel, Vincent Pilaud, Viviane Pons, The weak order on integer posets, arXiv:1701.07995 [math.CO], 2017.
  236. G. Chatel and V. Pons, Counting smaller elements in the Tamari and m-Tamari lattices, arXiv preprint arXiv:1311.3922, 2013
  237. Alain Chaumont and Tom Müller "All Elite Primes Up to 250 Billion", J. Integer Sequences, Volume 9, 2006, Article 06.3.8.
  238. C. Chauve, Structures arborescentes : problèmes algorithmiques et combinatoires, PHD thesis - LaBRI, Université Bordeaux 1 (2000).
  239. D. Chavarria-Miranda, A. Darte, R. Fowler and J. Mellor-Crummey, On efficient parallelization of line-sweep computations, Research Report 2001-45, Laboratoire de l'Informatique du Parallelisme, Ecole Normale Superiore de Lyon, November 2001.
  240. L. B. Chaves and P. A. Velloso, Teoria e pratica na busca de numeros primos de Mersenne, 1st Simposio Sul-Brasileiro de Matematica e Informatica Uniandrade.
  241. J. Chavoya, A. Lucero, S. Reynolds, On p-adic valuations of the generalized Fibonacci sequences, in MSRI-UP Research Reports, 2014; http://www.msri.org/system/cms/files/81/files/original/Research_Reports_2014_MSRI-UP_(Single_File).pdf#page=94
  242. H. Cheballah , G. H. E. Duchamp and K. A. Penson, Approximate substitutions and the normal ordering problem (2008); arXiv:0802.1162.
  243. H. Cheballah, S. Giraudo, R. Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605, 2013
  244. Denis Chebikin and Richard Ehrenborg, The f-vector of the descent polytope, Disc. Comput. Geom., 45 (2011), 410-424.
  245. Denis Chebikin, Richard Ehrenborg, Pavlo Pylyavskyy et al., Cyclotomic factors of the descent set polynomial (2007), arXiv:0705.2451.
  246. G. Chelnokov, M. Deryagina, A. Mednykh, On the Coverings of Amphicosms; Revised title: On the coverings of Euclidian manifolds B_1 and B_2, arXiv preprint arXiv:1502.01528, 2015
  247. Emmanuel Chemla, P Egré, B Spector, Characterizing logical consequence in many-valued logics, J. of Logic and Computation, to appear (2016); http://semanticsarchive.net/Archive/GQzYTM4N/Chemla-Egre-Spector-LCrelations.pdf
  248. B. F. Chen, E. Ghorbani, K. B. Wong, Cyclic decomposition of k-permutations and eigenvalues of the arrangement graphs, arXiv preprint arXiv:1308.5490, 2013
  249. Benjamin Chen, E Erives, L Fan, M Gerovitch, J Hsu et al., Alternator Coins, arXiv preprint arXiv:1605:05601, 2016
  250. Bin Chen, Haigang Zhou, Note on the problem of Ramanujan's radial limits, Advances in Difference Equations 2014, 2014:191 doi:10.1186/1687-1847-2014-191. ["In this note, we prove Theorem 2.2 by using the result related with the generating functions of convex compositions given by Andrews [15] and the Online Encyclopedia of Integer Sequences [16] as well as Appell-Lerch sums, we get the desired results.]
  251. Chao-Ping Chen, On the coefficients of asymptotic expansion for the harmonic number by Ramanujan, The Ramanujan Journal, 2015; doi:10.1007/s11139-015-9670-3
  252. Chao-Ping Chen, Sharp inequalities and asymptotic series of a product related to the Euler–Mascheroni constant, Journal of Number Theory, Volume 165, August 2016, Pages 314–323.
  253. Chao-Ping Chen, Sharp inequalities and asymptotic series related to Somos' quadratic recurrence constant, Journal of Number Theory, 2016, Volume 172, March 2017, Pages 145-159; doi:10.1016/j.jnt.2016.08.010
  254. C.-P. Chen and J. Choi, Asymptotic expansions for the constants of Landau and Lebesgue, Advances in Mathematics, Volume 254, 20 March 2014, Pages 622-641.
  255. Chen, Chao-Ping; Choi, Junesang. An Asymptotic Formula for (1+1/x)^x Based on the Partition Function. Amer. Math. Monthly 121 (2014), no. 4, 338--343. MR3183017.
  256. Chao-Ping Chen, XF Han, On Somos' quadratic recurrence constant, Journal of Number Theory, Volume 166, September 2016, Pages 31–40; doi:10.1016/j.jnt.2016.02.018
  257. Chao-Ping Chen and Long Lin, Asymptotic expansions related to Glaisher-Kinkelin constant based on the Bell polynomials, Journal of Number Theory 133 (2013) 2699-2705.
  258. Eunice Y.-J. Chen, A Choi, A Darwiche, On Pruning with the MDL Score, JMLR: Workshop and Conference Proceedings vol 52, 98-109, 2016; http://proceedings.mlr.press/v52/chen16.pdf
  259. Hongwei Chen, "Evaluations of Some Variant Euler Sums", J. Integer Sequences, Volume 9, 2006, Article 06.2.3.
  260. Imanuel Chen and Michael Z. Spivey, Integral Generalized Binomial Coefficients of Multiplicative Functions, Preprint 2015; Summer Research Paper 238, Univ. Puget Sound, http://soundideas.pugetsound.edu/summer_research/238.
  261. Kwang-Wu Chen, "Algorithms for Bernoulli numbers and Euler numbers", J. Integer Sequences, Volume 4, 2001, Article 01.1.6.
  262. Kwang-Wu Chen, "An Interesting Lemma for Regular C-fractions", J. Integer Sequences, Volume 6, 2003, Article 03.4.8.
  263. K.-W. Chen, Greatest Common Divisors in Shifted Fibonacci Sequences, J. Int. Seq. 14 (2011) # 11.4.7
  264. Ricky X. F. Chen, A Note on the Generating Function for the Stirling Numbers of the First Kind, Journal of Integer Sequences, 18 (2015), #15.3.8.
  265. Ricky X. F. Chen and Christian M. Reidys, A Combinatorial Identity Concerning Plane Colored Trees and its Applications, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.7.
  266. Ricky X. F. Chen and Louis W. Shapiro, "On Sequences Gn Satisfying Gn = (d+2)Gn-1 - Gn-2", J. Integer Sequences, Volume 10, 2007, Article 07.8.1.
  267. Wei Chen, Enumeration of Set Partitions Refined by Crossing and Nesting Numbers, MS Thesis, Department of Mathematics. SIMON FRASER UNIVERSITY, Fall 2014
  268. S. Chen, W. Zhai, Reciprocals of the Gcd-Sum Functions, J. Int. Seq. 14 (2011) # 11.8.3.
  269. W. Y. C. Chen, A. Y. L. Dai and R. D. P. Zhou, Ordered Partitions Avoiding a Permutation of Length 3, arXiv preprint arXiv:1304.3187, 2013
  270. William Y. C. Chen, Eva Y. P. Deng, Laura L. M. Yang, Riordan Paths and Derangements (2006), arXiv:math/0602298; Discrete Mathematics, Volume 308, Issue 11, 6 June 2008, Pages 2222-2227.
  271. Chen, William Y. C.; Fan, Neil J. Y.; Jia, Jeffrey Y. T. Labeled ballot paths and the Springer numbers. SIAM J. Discrete Math. 25 (2011), no. 4, 1530-1546.
  272. Chen, William Y. C.; Fan, Neil J. Y.; Jia, Jeffrey Y. T. The generating function for the Dirichlet series Lm(s). Math. Comp. 81 (2012), no. 278, 1005-1023.
  273. Chen, William Y. C.; Fan, Neil J. Y.; Zhao, Alina F. Y. Partitions and partial matchings avoiding neighbor patterns. European J. Combin. 33 (2012), no. 4, 491-504.
  274. W. Y. C. Chen and A. M. Fu, Context-free Grammars for Permutations and Increasing Trees, arXiv preprint arXiv:1408.1859, 2014
  275. William Y. C. Chen, Nelson Y. Li, Louis W. Shapiro, The Butterfly Decomposition of Plane Trees (2005), arXiv:math/0511045; Discrete Applied Mathematics, Volume 155, Issue 17, 15 October 2007, Pages 2187-2201.
  276. Chen, William Y. C.; Li, Nelson Y.; Shapiro, Louis W.; Yan, Sherry H. F. Matrix identities on weighted partial Motzkin paths. European J. Combin. 28 (2007), no. 4, 1196-1207.
  277. W. Y. C. Chen, L. H. Liu and C. J. Wang, Linked Partitions and Permutation Tableaux, arXiv preprint arXiv:1305.5357, 2013
  278. Chen, William Y. C.; Mansour, Toufik; Yan, Sherry H. F. Matchings avoiding partial patterns. Electron. J. Combin. 13 (2006), no. 1, Research Paper 112, 17 pp.
  279. W. Y. C. Chen, S. X. M. Pang, E. X. Y. Qu and R. P Stanley, Pairs of Noncrossing Free Dyck Paths and Noncrossing Partitions, arXiv:0804.2930; Discrete Math., 309 (2009), 2834-2838.
  280. William Y. C. Chen and Carol J. Wang, Noncrossing Linked Partitions and Large (3, 2)-Motzkin Paths, Discrete Math., 312 (2012), 1918-1922; http://www.billchen.org/publications/appear-noncrossing/appear-noncrossing.htm
  281. Chen, William Y. C.; Wang, David G. L. Singletons and adjacencies of set partitions of type B. Discrete Math. 311 (2011), no. 6, 418-422.
  282. William Y. C. Chen, Susan Y. J. Wu and Catherine Yan, Linked Partitions and Linked Cycles (2006), arXiv:math/0607719; European Journal of Combinatorics, Volume 29, Issue 6, August 2008, Pages 1408-1426.
  283. William Y. C. Chen, Sherry H. F. Yan, Laura L. M. Yang, Weighted 2-Motzkin Paths (2004), arXiv:math/0410200.
  284. William Y.C. Chen, Sherry H.F. Yan, Laura L.M. Yang, Identities from weighted Motzkin paths, Advances in Applied Mathematics, Volume 41, Issue 3, September 2008, Pages 329-334.
  285. Xi Chen, H. Liang, Y. Wang, Total positivity of Riordan arrays, European Journal of Combinatorics, Volume 46, May 2015, Pages 68–74.
  286. Xi Chen, H. Liang, Y. Wang, Total positivity of recursive matrices, Linear Algebra and its Applications, Volume 471, 15 April 2015, Pages 383–393.
  287. Xiao-Min Chen, X.-K. Chang, J.-Q. Sun, X./-B. Hu, Y.-N. Yeh, Three semi-discrete integrable systems related to orthogonal polynomials and their generalized determinant solutions, Nonlinearity, Volume 28, Number 7, Jun 08 2015. Also https://www.researchgate.net/profile/Xiang-Ke_Chang/publication/278333903_Three_semi-discrete_integrable_systems_related_to_orthogonal_polynomials_and_their_generalized_determinant_solutions/links/560c9faa08ae73e7a6a2fb95.pdf.
  288. Eddie Cheng, Marc J. Lipman, Laszlo Liptak, Strong structural properties of unidirectional star graphs, Discrete Applied Mathematics, Volume 156, Issue 15, 6 August 2008, Pages 2939-2949.
  289. Eddie Cheng, Ke Qiu and Zhizhang Shen, On the surface area of the augmented cubes, J. of Supercomputing, doi:10.1007/s11227-011-0641-1
  290. Cheng, Szu-En; Eu, Sen-Peng; Fu, Tung-Shan, Area of Catalan paths on a checkerboard. European J. Combin. 28 (2007), no. 4, 1331-1344.
  291. Eddie Cheng, Qiu Ke and Zhizhang Shen, On the Surface Area of the Asymmetric Twisted Cube, in COMBINATORIAL OPTIMIZATION AND APPLICATIONS, Lecture Notes in Computer Science, 2011, Volume 6831/2011, 411-423, doi:10.1007/978-3-642-22616-8_32
  292. Fan Cheng, Optimality of routing on the wiretap network with simple network topology, Information Theory (ISIT), 2014 IEEE International Symposium on, June 29 2014-July 4 2014 Page(s): 786 - 790 INSPEC Accession Number: 14524545 Honolulu, HI doi:10.1109/ISIT.2014.6874940
  293. Fan Cheng, Vincent Y. F. Tan, A Numerical Study on the Wiretap Network with a Simple Network Topology, preprint arXiv:1505.02862, 2015. (A014466)
  294. S.-E. Cheng, S. Elizalde, A. Kasraoui and B. E. Sagan, Inversion polynomials for 321-avoiding permutations, http://math.msu.edu/~sagan/Papers/Old/ipt.pdf, 2012.
  295. S.-E. Cheng, S. Elizalde, A. Kasraoui and B. E. Sagan, Inversion polynomials for 321-avoiding permutations: addendum, arXiv preprint arXiv:1305.3845, 2013
  296. Gi-Sang Cheon, M.E.A. El-Mikkawy, Generalized harmonic numbers with Riordan arrays, Journal of Number Theory, Volume 128, Issue 2, February 2008, Pages 413-425.
  297. Gi-Sang Cheon and Sung-Tae Jin, Structural properties of Riordan matrices and extending the matrices, Linear Algebra and its Applications Volume 435, Issue 8, 15 October 2011, Pages 2019-2032, doi:10.1016/j.laa.2011.04.001
  298. G.-S. Cheon and S.-T. Jin, A unified combinatorial interpretation for Riordan matrices associated to the functional equations of higher degree, PDF, 2012.
  299. Gi-Sang Cheon, Sung-Tae Jin, Hana Kim and Louis W. Shapiro, Riordan group involutions and the -sequence, Discrete Applied Mathematics, Volume 157, Issue 8, 28 April 2009, Pages 1696-1701.
  300. Gi-Sang Cheon, S.-T. Jin, L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Available online 30 March 2015.
  301. Gi-Sang Cheon and Ji-Hwan Jung, r-Whitney numbers of Downing lattices, Discrete Math., 312 (2012), 2337-2348.
  302. Gi-Sang Cheon and Hana Kim, Simple proofs of open problems about the structure of involutions in the Riordan group, Linear Algebra and its Applications, Volume 428, Issue 4, 1 February 2008, Pages 930-940.
  303. Gi-Sang Cheon, Hana Kim and Louis W. Shapiro, Riordan group involutions, Linear Algebra and its Applications, Volume 428, Issue 4, 1 February 2008, Pages 941-952.
  304. Gi-Sang Cheon, Hana Kim and Louis W. Shapiro, A generalization of Lucas polynomial sequence, Discrete Applied Mathematics, Volume 157, Issue 5, 6 March 2009, Pages 920-927.
  305. Gi-Sang Cheon, Hana Kim and Louis W. Shapiro, Combinatorics of Riordan arrays with identical A and Z sequences, Discrete Math., 312 (2012), 2040-2049.
  306. G.-S. Cheon, H. Kim, L. W. Shapiro, Mutation effects in ordered trees</a>, arXiv preprint arXiv:1410.1249, 2014
  307. Gi-Sang Cheon, Sang-Gu Lee and Louis W. Shapiro, The Fine numbers refined, European Journal of Combinatorics, In Press, Corrected Proof, Available online 16 June 2009.
  308. Gi-Sang Cheon and Toufik Mansourb, Rational combinations for the sums involving inverse binomial coefficients, Applied Mathematics and Computation, Volume 218, Issue 6, 15 November 2011, Pages 2641-2646; doi:10.1016/j.amc.2011.08.003 PDF.
  309. Gi-Sang Cheon and Louis Shapiro, The uplift principle for ordered trees, Applied Mathematics Letters, 28 November 2011; doi:10.1016/j.aml.2011.11.018
  310. Otfried Cheong and Mira Lee, The Hadwiger Number of Jordan Regions is Unbounded (2007), arXiv:cs/0702079; Discrete and Computational Geometry, Volume 37, Number 4 / May, 2007.
  311. B. Chern, P. Diaconis, D. M. Kane, R. C. Rhoades, Closed expressions for averages of set partition statistics, http://math.stanford.edu/~rhoades/FILES/setpartitions.pdf, 2013.
  312. B. Chern, P. Diaconis, D. M. Kane, R. C. Rhoades, Central limit theorems for some set partition statistics, 2014, http://statweb.stanford.edu/~cgates/PERSI/papers/setpartition_stats10.pdf
  313. H.-H. Chern, H.-K. Hwang, T.-H. Tsai, Random unfriendly seating arrangement in a dining table, arXiv preprint arXiv:1406.0614, 2014
  314. Shane Chern, On a conjecture of George Beck, arXiv:1705.10700 [math.NT], 2017.
  315. N. Chetty, D. J. Griffith, Zernike-basis expansion of the fractional and radial Hilbert phase masks, Current Applied Physics, 15 (2015) 739-747
  316. M. Chevalier, R. Charrondière, Q. Cormier, et al., Projet Pensées Profondes, Fundamental Computer Science Master’s Degree 1, September 2014 – December 2014, ENS de Lyon; https://projetpp.github.io/documentation/finalReport.pdf
  317. Philippe A. J. G. Chevalier, On the discrete geometry of physical quantities, Preprint, 2013 (mentions A045778, A008451, A000141, ...).
  318. P. A. J. G. Chevalier, On a Mathematical Method for Discovering Relations Between Physical Quantities: a Photonics Case Study, Slides from a talk presented at ICOL2014, https://www.researchgate.net/profile/Philippe_Chevalier2/publication/260598331_On_a_Mathematical_Method_for_Discovering_Relations_Between_Physical_Quantities_a_Photonics_Case_Study/links/00b7d531be7b837626000000.pdf
  319. P. A. J. G. Chevalier, A “table of Mendeleev” for physical quantities?, Slides from a talk, May 14 2014, Leuven, Belgium, http://www.researchgate.net/profile/Philippe_Chevalier2/publication/262067273_A_table_of_Mendeleev_for_physical_quantities/links/0c9605368f6d191478000000.pdf
  320. Philippe A. J. G. Chevalier, Dimensional exploration techniques for photonics, Slides of a talk, 2016; https://www.researchgate.net/profile/Philippe_Chevalier2/publication/297497200_Dimensional_exploration_techniques_for_photonics/links/56df544f08ae979addef59bf.pdf
  321. N. Chheda, M. K. Gupta, RNA as a Permutation, arXiv preprint arXiv:1403.5477, 2014
  322. G. Chiaselotti, W. Keith, P. A, Oliverio, Two Self-Dual Lattices of Signed Integer Partitions, Appl. Math. Inf. Sci. 8, No. 6, 3191-3199 (2014).
  323. Andrew M. Childs, Pawel Wocjan, On the quantum hardness of solving isomorphism problems as nonabelian hidden shift problems (2005), arXiv:quant-ph/0510185.
  324. L. N. Childs, A Concrete Introduction to Higher Algebra, Springer-Verlag.
  325. Chinchon, A. S., Mixing Benford, GoogleVis And On-Line Encyclopedia of Integer Sequences, URL = https://aschinchon.wordpress.com/2014/12/23/mixing-bendford-googlevis-and-on-line-encyclopedia-of-integer-sequences/, 2014. Note: as of Feb 09 2017, the results in this page appear to be incorrect - N. J. A. Sloane 19:37, 9 February 2017 (UTC).
  326. Alejandro Chinea, On the Partition Functions Induced by Iterated (k-Folded) Wreath Product Groups, Advanced Studies in Theoretical Physics Vol. 9, 2015, no. 16, 757 - 786; doi:10.12988/astp.2015.5989
  327. P. Z. Chinn, R. Grimaldi and S. Heubach, The Frequency of Summands of a Particular Size in Palindromic Compositions, Ars Combin. 69 (2003), 65-78.
  328. Phyllis Chinn, Ralph Grimaldi and Silvia Heubach, "Tiling with L's and Squares", J. Integer Sequences, Volume 10, 2007, Article 07.2.8.
  329. Phyllis Chinn and Silvia Heubach, "Integer Sequences Related to Compositions without 2's", J. Integer Sequences, Volume 6, 2003, Article 03.2.3.
  330. P. Z. Chinn and S. Heubach, Compositions of n with no occurrence of k, Congressus Numerantium 164 (2003), 33-51
  331. P. Z. Chinn and S. Heubach, (1,k)-Compositions, preprint (submitted to Congressus Numerantium).
  332. P. Z. Chinn and D. R. Oliver, Some Results Inspired by Covering Rectangles with 1x1 and 1x3 Rectangles, Congr. Numerantium 122, 119-124 (1996).
  333. F.A. Chishtie, K.M. Rao, I.S. Kotsireas et al., An investigation of uniform expansions of large order Bessel functions in Gravitational Wave Signals from Pulsars (2006), arXiv:astro-ph/0611035.
  334. D Chistikov, S Iván, A Lubiw, J Shallit, Fractional coverings, greedy coverings, and rectifier networks, arXiv preprint arXiv:1509.07588, 2015
  335. B. Chitturi, W. Fahle, Z. Meng, L. Morales, C.O. Shields, I.H. Sudborough, W. Voit, An (18/11)n upper bound for sorting by prefix reversals, Theoretical Computer Science, In Press, Corrected Proof, Available online 10 May 2008.
  336. Bhadrachalam Chitturi and Krishnaveni K S, Adjacencies in Permutations, arXiv preprint arXiv:1601.04469, 2016 ["We were made aware of OEIS and [28] by an anonymous referee which lead to [27]. An examination of some intger sequences in OEIS reveals that our article provides an alternative explanation for some of the known integer sequences. To our knowledge, the current type of exploration of adjacencies in permutations and their applications are novel."]
  337. Y.B. Choe, K.T. Huber, J.H. Koolen, Y.S. Kwon, V. Moulton, Counting vertices and cubes in median graphs of circular split systems, European Journal of Combinatorics, Volume 29, Issue 2, February 2008, Pages 443-456.
  338. Choi, Gyoung-Sik; Hwang, Suk-Geun; Kim, Ik-Pyo; Shader, Bryan L. (+-1)-invariant sequences and truncated Fibonacci sequences. Linear Algebra Appl. 395 (2005), 303-312.
  339. J. Choi, N. Pippenger, Counting the Angels and Devils in Escher's Circle Limit IV, arXiv preprint arXiv:1310.1357, 2013
  340. Ji Young Choi, Ternary Modified Collatz Sequences And Jacobsthal Numbers, Journal of Integer Sequences, 2016 Vol 19 #16.7.5.
  341. Suyoung Choi, Shizuo Kaji, Hanchul Park, The cohomology groups of real toric varieties associated to Weyl chambers of type C and D, arXiv:1705.00275 [math.AT], 2017.
  342. Suyoung Choi, B Park, H Park, The Betti numbers of real toric varieties associated to Weyl chambers of type B, arXiv preprint arXiv:1602.05406, 2016
  343. S. Choi and H. Park, A new graph invariant arises in toric topology, arXiv preprint arXiv:1210.3776, 2012
  344. Y. Choliy, A. V. Sills, A formula for the partition function that “counts”, Preprint 2015, PDF
  345. C.-P. Chou and H. A. Witek, An Algorithm and FORTRAN Program for Automatic Computation of the Zhang-Zhang Polynomial of Benzenoids, MATCH: Commun. Math. Comput. Chem, 68 (2012) 3-30; PDF
  346. C.-P. Chou, H. A. Witek, ZZDecomposer: A Graphical Toolkit for Analyzing the Zhang-Zhang Polynomials of Benzenoid Structures, MATCH: Communications in Mathematical and in Computer Chemistry. 71 (2014) 741-764.
  347. R. Choulet, Wenn ich von Kultur in Mathematik höre.., 39th Congress of the SBPM, 2013
  348. Chak-On Chow, doi:10.1016/j.aam.2007.07.002 On certain combinatorial expansions of the Eulerian polynomials, Advances in Applied Mathematics, Volume 41, Issue 2, August 2008, Pages 133-157.
  349. C.-O. Chow and S.-M. Ma, Counting signed permutations by their alternating runs, Discrete Mathematics, Volume 323, 28 May 2014, Pages 49-57
  350. Chow, C. O., Ma, S. M., Mansour, T., & Shattuck, M. (2014). Counting permutations by cyclic peaks and valleys. In Annales Mathematicae et Informaticae (Vol. 43, pp. 43-54).
  351. D. D. K. Chow, G. Compère, Black holes in N=8 supergravity from SO(4,4) hidden symmetries, arXiv preprint arXiv:1404.2602, 2014 ["The function H(psi) was found by first expanding F in terms of the sum and difference of squares of electric and magnetic charges in a perturbation series. The Taylor coeffcients of the function H(psi) were then recognized as belonging to a hypergeometric series using an algorithm for integer sequence recognition (the OEIS), then simplified in terms of trigonometric functions."]
  352. Sam Chow and Carl Pomerance, Triangles with prime hypotenuse, arXiv:1703.10953 [math.NT], 2017.
  353. Stirling Chow and Frank Ruskey, "Minimum Area Venn Diagrams Whose Curves Are Polyominoes", Mathematics Magazine, Vol. 80, (2007) pp. 91-103.
  354. Stirling Chow, Frank Ruskey, Gray codes for column-convex polyominoes and a new class of distributive lattices, Discrete Mathematics, 309 (2009), 5284-5297.
  355. T. Y. Chow, Review of "Bonichon, Nicolas; Bousquet-Melou, Mireille; Fusy, Eric; Baxter permutations and plane bipolar orientations. Sem. Lothar. Combin. 61A (2009/10), Art. B61Ah, 29 pp.", MathSciNet Review MR2734180 (2011m:05023). (The review mentions the OEIS although the article does not.)
  356. T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3. [T. Y. Chow writes that although they forgot to mention it in the paper, the OEIS helped them discover the main theorem.]
  357. T. Y. Chow, C. K. Fan, M. X. Goemans and J. Vondrak, Wide partitions, Latin tableaux and Rota's basis conjecture, Advances in Applied Math. 31 (2003), 334-358. [Mentions Superseeker]
  358. Hagen Chrapary, Wolfgang Dalitz, and Wolfram Sperber, swMATH - Challenges, Next Steps, and Outlook, Workshop and Work in Progress Papers at CICM 2016, p. 107-116.
  359. Julie Christophe, Jean-Paul Doignon and Samuel Fiorini, "Counting Biorders", J. Integer Sequences, Volume 6, 2003, Article 03.4.3.
  360. D Christopher, T Nadu, Partitions with Fixed Number of Sizes, Journal of Integer Sequences, 15 (2015), #15.11.5.
  361. Wenchang Chu, Three Combinatorial Sequences Derivable from the Lattice Path Counting, Annals of Discrete Mathematics, Volume 52, 1992, Pages 81-92.
  362. K. S. Chua, The root lattice A*_n and Ramanujan's circular summation of theta functions, Proc. Amer. Math. Soc. 130 (2002), no. 1, 1-8.
  363. Maria Chudnovsky, Jan Goedgebeur, Oliver Schaudt, Mingxian Zhong, Obstructions for three-coloring graphs without induced paths on six vertices, preprint arXiv:1504.06979, 2015 (A000669, A078564, A076322, A076323)
  364. F. R. K. Chung, R. L. Graham, V. E. Hoggatt Jr., M. Kleiman, The number of baxter permutations, Journal of Combinatorial Theory, Series A, Volume 24, Issue 3, May 1978, Pages 382-394.
  365. Chung, Won Sang; Kim, Taekyun; Mansour, Toufik The q-deformed gamma function and q-deformed polygamma function. Bull. Korean Math. Soc. 51 (2014), no. 4, 1155-1161.
  366. V. Chvatal, Notes on the Kolakoski Sequence, DIMACS Technical Report 93-84, December 1993.
  367. Frederic Chyzak and Alexis Darrasse, DynaMoW, an OCaml language extension for the run-time generation of mathematical contents and their presentation on the web, http://ddmf.msr-inria.inria.fr/download/DynaMoW-ICFP11.pdf.
  368. F. Chyzak and A. Darrasse, Using Camlp4 for Presenting Dynamic Mathematics on the Web: DynaMoW, an OCaml Language Extension for the Run-Time Generation of Mathematical Contents and their Presentation on the Web, ACM SIGPLAN Notices, 2011; http://dl.acm.org/citation.cfm?id=2034809.
  369. F. Chyzak, I. Gutman and P. Paule, Predicting the number of hexagonal systems with 24 and 25 hexagons, Communications in Mathematical and Computer Chemistry, no. 40, p. 139-151.
  370. Chyzak, Frédéric; Mishna, Marni; Salvy, Bruno, Effective scalar products of D-finite symmetric functions. J. Combin. Theory Ser. A 112 (2005), no. 1, 1-43.

About this page

  • This is part of the series of OEIS Wiki pages that list works citing the OEIS.
  • Additions to these pages are welcomed.
  • But if you add anything to these pages, please be very careful — remember that this is a scientific database. Spell authors' names, titles of papers, journal names, volume and page numbers, etc., carefully, and preserve the alphabetical ordering.
  • If you are unclear about what to do, contact one of the Editors-in-Chief before proceeding.
  • Works are arranged in alphabetical order by author's last name.
  • Works with the same set of authors are arranged by date, starting with the oldest.
  • The full list of sections is: A Ba Bi Ca Ci D E F G H I J K L M N O P Q R Sa Sl T U V W X Y Z.
  • For further information, see the main page for Works Citing OEIS.
Personal tools