login
A284205
Ninth column of Euler's difference table in A068106.
1
0, 0, 0, 0, 0, 0, 0, 40320, 322560, 2943360, 30078720, 339696000, 4196666880, 56255149440, 812752093440, 12585067447680, 207863095910400, 3646938237505920, 67723519234210560, 1326863186062565760, 27349945952061841920, 591598086412112035200
OFFSET
1,8
COMMENTS
For n >= 9, this is the number of permutations of [n] that avoid substrings j(j+8), 1 <= j <= n-8.
LINKS
Enrique Navarrete, Generalized K-Shift Forbidden Substrings in Permutations, arXiv:1610.06217 [math.CO], 2016.
FORMULA
For n>=9: a(n) = Sum_{j=0..n-8} (-1)^j*binomial(n-8,j)*(n-j)!.
Note a(n)/n! ~ 1/e.
EXAMPLE
a(12)=339696000 since this is the number of permutations in S12 that avoid substrings {19,2(10),3(11),4(12)}.
MATHEMATICA
With[{k = 9}, ConstantArray[0, k - 2]~Join~Table[Sum[(-1)^j*Binomial[n - (k - 1), j] (n - j)!, {j, 0, n - (k - 1)}], {n, k - 1, k + 12}]] (* Michael De Vlieger, Mar 26 2017 *)
CROSSREFS
Also 40320 times A176734.
Cf. A068106.
Sequence in context: A250055 A321844 A226887 * A239035 A179734 A061123
KEYWORD
nonn
AUTHOR
Enrique Navarrete, Mar 22 2017
STATUS
approved