login
A284204
Eighth column of Euler's difference table in A068106.
1
0, 0, 0, 0, 0, 0, 5040, 35280, 287280, 2656080, 27422640, 312273360, 3884393520, 52370755920, 760381337520, 11824686110160, 196038409800240, 3450899827705680, 64272619406504880, 1262590566656060880, 26087355385405781040, 565510731026706254160
OFFSET
1,7
COMMENTS
For n >= 8, this is the number of permutations of [n] that avoid substrings j(j+7), 1 <= j <= n-7.
LINKS
Enrique Navarrete, Generalized K-Shift Forbidden Substrings in Permutations, arXiv:1610.06217 [math.CO], 2016.
FORMULA
For n>=8: a(n) = Sum_{j=0..n-7} (-1)^j*binomial(n-7,j)*(n-j)!.
Note a(n)/n! ~ 1/e.
EXAMPLE
a(11)=27422640 since this is the number of permutations in S11 that avoid substrings {18,29,3(10),4(11)}.
MATHEMATICA
With[{k = 8}, ConstantArray[0, k - 2]~Join~Table[Sum[(-1)^j*Binomial[n - (k - 1), j] (n - j)!, {j, 0, n - (k - 1)}], {n, k - 1, k + 12}]] (* Michael De Vlieger, Mar 26 2017 *)
CROSSREFS
Also 5040 times A176733.
Cf. A068106.
Sequence in context: A147632 A321843 A226886 * A159083 A179731 A061140
KEYWORD
nonn
AUTHOR
Enrique Navarrete, Mar 22 2017
STATUS
approved