login
A061169
Third column of Lucas bisection triangle (even part).
2
1, 39, 315, 1687, 7470, 29634, 109421, 384105, 1298613, 4264835, 13686456, 43102644, 133636825, 408900987, 1237114335, 3706490479, 11010661266, 32463981270, 95081107013, 276820695645, 801633669561
OFFSET
0,2
COMMENTS
Numerator of g.f. is row polynomial Sum_{m=0..4} A061186(3,m)*x^m.
LINKS
Geoffrey B. Campbell, Vector Partition Identities for 2D, 3D and nD Lattices, arXiv:2302.01091 [math.CO], 2023.
FORMULA
a(n) = A060923(n+2, 2).
G.f.: (1+x)*(1+29*x-35*x^2+12*x^3)/(1-3*x+x^2)^3.
MATHEMATICA
CoefficientList[Series[(1 + x) (1 + 29 x - 35 x^2 + 12 x^3)/(1 - 3 x + x^2)^3, {x, 0, 20}], x] (* Michael De Vlieger, Feb 06 2023 *)
CROSSREFS
Sequence in context: A190537 A187095 A232874 * A233369 A238102 A266172
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved