login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060934
Second column of Lucas bisection triangle (even part).
4
1, 17, 80, 303, 1039, 3364, 10493, 31885, 95032, 279051, 809771, 2327372, 6636025, 18794633, 52925984, 148303719, 413768263, 1150029940, 3185625077, 8797726981, 24230897416, 66574108227
OFFSET
0,2
COMMENTS
Numerator of g.f. is row polynomial Sum_{m=0..3} A061186(2, m)*x^m.
LINKS
É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
FORMULA
a(n) = A060923(n+1, 1).
G.f.: (1 + 11*x - 11*x^2 + 4*x^3)/(1 - 3*x + x^2)^2.
a(n) = 2*n*Lucas(2*n+2) + Fibonacci(2*n+2). - G. C. Greubel, Apr 09 2021
MATHEMATICA
LinearRecurrence[{6, -11, 6, -1}, {1, 17, 80, 303}, 31] (* G. C. Greubel, Apr 09 2021 *)
CoefficientList[Series[(1+11x-11x^2+4x^3)/(1-3x+x^2)^2, {x, 0, 30}], x] (* Harvey P. Dale, Aug 28 2021 *)
PROG
(Magma) [2*n*Lucas(2*n+2) + Fibonacci(2*n+2): n in [0..30]]; // G. C. Greubel, Apr 09 2021
(Sage) [2*n*lucas_number2(2*n+2, 1, -1) + fibonacci(2*n+2) for n in (0..30)] # G. C. Greubel, Apr 09 2021
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved