login
A060932
Fifth convolution of Lucas numbers A000032(n+1), n >= 0.
2
1, 18, 159, 942, 4311, 16536, 55898, 171924, 491487, 1325546, 3409347, 8430246, 20164223, 46880424, 106350942, 236147828, 514553154, 1102562952, 2327442276, 4847463408, 9974081130, 20297335340
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (6,-9,-10,30,6,-41,-6,30,10,-9,-6,-1).
FORMULA
a(n) = A060922(n+5, 5) (sixth column of Lucas triangle).
G.f.: ((1+2*x)/(1-x-x^2))^6.
a(n) = ( 25*(125*n^5 +825*n^4 +1925*n^3 +2895*n^2 +2990*n +744)*L(n+2) +(1875*n^5 +13125*n^4 +31875*n^3 +37875*n^2 +29250*n +19200)*L(n+1))/(5!*5^4), with the Lucas numbers L(n)=A000032(n).
MATHEMATICA
Table[((744+2990*n+2895*n^2+1925*n^3+825*n^4+125*n^5)*LucasL[n+2] +3*(256+390*n + 505*n^2+425*n^3+175*n^4+25*n^5)*LucasL[n+1])/(5^2*5!), {n, 0, 40}] (* G. C. Greubel, Apr 08 2021 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( ((1+2*x)/(1-x-x^2))^6 )); // G. C. Greubel, Apr 08 2021
(Sage)
def A060932_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( ((1+2*x)/(1-x-x^2))^6 ).list()
A060932_list(40) # G. C. Greubel, Apr 08 2021
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved