The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060922 Convolution triangle for Lucas numbers A000032(n+1), n >= 0. 11
 1, 3, 1, 4, 6, 1, 7, 17, 9, 1, 11, 38, 39, 12, 1, 18, 80, 120, 70, 15, 1, 29, 158, 315, 280, 110, 18, 1, 47, 303, 753, 905, 545, 159, 21, 1, 76, 566, 1687, 2568, 2120, 942, 217, 24, 1, 123, 1039, 3612, 6666, 7043, 4311 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In the language of Shapiro et al. (see A053121 for the reference) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. G.f. for row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) is (1+2*z)/(1-(1+x)*z-(1+2*x)*z^2). Row sums give A060925. Column sequences (without leading zeros) are, for m=0..6: A000032(n+1)= A000204(n+1) (Lucas), A004799(n+1), A060929-33. Bisection of this triangle gives triangles A060923 (even part) and A060924 (odd part). For the m-th column sequence (without leading zeros) one has: a(n+m,m)= (pL1(m,n)*L(n+2)+pL2(m,n)*L(n+1))/(m!*5^m), m >= 0, with the Lucas numbers L(n)=A000032(n), n >= 0 and the row polynomials pL1(n,x) := sum(A061188(n,m)*x^n,m=0..n) and pL2(n,x) := sum(A061189(n,m)*x^m,m=0..n). Riordan array ((1+2*x)/(1-x-x^2), x*(1+2*x)/(1-x-x^2)). - Philippe Deléham, Jan 21 2014 LINKS FORMULA a(n, m)=((n-m+1)*a(n, m-1)+2*(2*n-m)*a(n-1, m-1)+4*(n-1)*a(n-2, m-1))/(5*m), n >= m >= 1, a(n, 0)= A000204(n+1)= A000032(n+1). G.f. for m-th column: ((1+2*x)/(1-x-x^2))* ((x*(1+2*x))/(1-x-x^2))^m. T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 21 2014 EXAMPLE {1}; {3,1}; {4,6,1}; ...; p(2,x) = 4+6*x+x^2. Triangle begins: 1 ; 3, 1; 4, 6, 1; 7, 17, 9, 1; 11, 38, 39, 12, 1; 18, 80, 120, 70, 15, 1; 29, 158, 315, 280, 110, 18, 1; 47, 303, 753, 905, 545, 159, 21, 1; CROSSREFS Cf. A000032. Sequence in context: A286951 A260355 A075419 * A143790 A226572 A251633 Adjacent sequences:  A060919 A060920 A060921 * A060923 A060924 A060925 KEYWORD nonn,easy,tabl AUTHOR Wolfdieter Lang, Apr 20 2001 EXTENSIONS Example improved by Philippe Deléham, Jan 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 24 18:11 EST 2020. Contains 338616 sequences. (Running on oeis4.)